Autonomous Adaptation of User Interfaces to Support
Mobility in Ambient Intelligence Systems

Gervasio Varela
Integrated Group for Engineering Research, University of A Corufia
C/ Mendizabal S/N, 15403, Ferrol, A Coruiia, Spain
gervasio.varela@udc.es

ABSTRACT

The work presented in this paper is focused on building
Ambient Intelligence (AmlI) applications capable of moving
from one environment to another, while their user interface
keeps adapting itself, autonomously, to the variable
environment conditions and the available interaction
resources.

Aml applications are expected to interact with users
naturally and transparently, therefore, most of their
interaction relies on embedded devices that obtain
information from the user and environment. This work
implements a framework for Aml systems that elevates
those embedded devices to the class of interaction
resources. It does so by providing a new level of abstraction
that decouples applications, conceptually and physically,
from the different specific interaction resources available
and their underlying heterogeneous technologies.

In order to drive the adaptation process to environment
changes, the system makes use of a set of models that
describe the user, environment conditions and devices, and
algorithms for context-aware selection of the interaction
devices.

Author Keywords
User Interfaces; Ambient Intelligence; Distributed User
Interfaces; Context Adaptation.

ACM Classification Keywords

D2.2 [Software Engineering]: Design Tools and
Techniques — User interfaces;, H5. [Information interfaces
and presentation]: User Interfaces — Interaction styles,
Input devices and strategies, user interface management
system (UIMS).

General Terms
Human Factors; Design; Algorithms.

INTRODUCTION
The operation of an Ambient Intelligence (Aml) system is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

quite different from a classic software system. An Aml
system is expected to behave proactively and transparently
[1], interacting with the users and their environment in the
most natural way available. To achieve that, Aml systems
must rely on their capacity to use any interaction resource
available in a smart environment.

These interaction resources are also quite different from
traditional interaction devices. Aml applications use mainly
sensing/actuation devices and appliances to interact with
the user and the environment [1]. Because of that, they are
exposed to a complex world populated by a wide range of
different technologies and devices that can be used to
implement their user interaction subsystems.

As the user moves from one place to another, the smart
environment in which the system is operating is changing,
and with it, the available devices, the users and even the
environment conditions. Predicting this variability at design
time is quite difficult, and because of this, the majority of
AmlI systems are designed for a specific environment with a
specific set of users, devices and conditions.

The main objective of this work is to provide Aml
developers with a set of abstractions that isolate them from
the user interaction capabilities of the system, which,
combined with a distributed Ul management system
capable of connecting those abstractions to end devices, at
runtime, facilitates the development of Aml systems
adaptable to different devices/environments/users [2, 3].

This work tries to fulfill this objective by designing and
implementing a Ul management system integrated into an
existing Aml application platform [4]. It uses a model-
driven approach [5] to build user interfaces by specifying a
series of high level declarative models which, at runtime,
are transformed into a set of distributed interaction devices.
Applications are decoupled from the specific characteristics
and technologies of these devices by using a distributed
agent communication protocol called General Interaction
Protocol (GIP), which is implemented by the devices and
abstracts them as interaction resources.

This paper is organized as follows. Section 2 describes
related work; Section 3 explains the contributions of this
research and Section 4 presents the current state of
development and conclusions.

mailto:gervasio.varela@udc.es

RELATED WORK

The problem of Ul adaptation and reusability in AmlI
applications has been previously identified by different
authors. In [2] Blumendorf et al. introduce the problematic
associated with user interaction in Ambient Assisted Living
(AAL) environments, which are a subset of AmI. The paper
presents a framework for Uls development for those
environments that use a model-driven approach and context
information to drive the adaptation at runtime. In [3]
Abascal et al. identify the necessity of adaptation to the
users, because their capabilities and disabilities can greatly
impact the performance of the Ul of an Aml system. They
propose the use of three models, User model, Task model
and Environment model, in order to support the
autonomous adaptation of the application GUI.

The difficulties associated with user and application
mobility in AmI systems have also been studied by many
authors. Ranganathan et al. [6] and Satoh et al. [7] provide a
similar approach to the migration of applications in
Ubiquitous Computing (UC) environments. Even if not
specifically related to Ul migration, they show that one of
the main difficulties when moving a highly distributed
system is how to deploy it in a new set of computing
devices. They state that the deployment must be achieved
bearing in mind the requirements of the system
components, as well as the characteristics of the computing
resources available. In [8] the authors provide a good
overview of the specific problematic of supporting mobility
in Aml, while [9] provides a more insightful view of the
problems associated with the migration of user interfaces in
Aml environments. The two main problems identified are:
detecting and integrating the different devices available in
each environment; and the need to provide users with an
adequate UI able to use the available devices.

UI adaptation to users and devices is also a highly studied
topic by the Human-Computer Interaction (HCI)
community. In 1999 [10] Thevenin and Coutaz introduced
the term ‘plasticity of user interfaces’ as the capacity of a
Ul to support changes in the system’s physical
characteristics and in the environment while preserving
usability. They also proposed the use of model-driven
engineering techniques in order to support Ul adaptation.
This proposal has been very successful within the HCI
community and many different authors have used it as the
basis for their own approach to UI adaptation [5, 11]. Also

in the field of UC and Aml, these kinds of model-driven
approaches have been applied with proven results [2, 3].

Another topic of great importance for this thesis is the field
of distributed multimodal user interfaces. Due to the
intrinsic distributed nature of Aml systems, their Ul will
operate using devices that are physically distributed
throughout the smart environment [1]. Furthermore, these
devices will use different modalities to interact with the
user. Two prominent approaches to distributed multimodal
Uls are: the Cameleon-rt [12] reference model for
distributed, migratable and adaptive user interfaces; and the
W3C conceptual framework to support multimodal Uls
[13]. These two frameworks share some similarities in their
way of abstracting distributed UI resources, but the W3C
approach ignores the adaptation problem.

INNOVATIVE APPROACH AND RELEVANCE OF TOPIC
As shown by exploring the state of the art, some work has
been carried out in the topic of Ul adaptation and mobility
in UC and Aml systems [2, 3]. The approach followed by
these projects is mainly focused on graphical user interfaces
and their adaptation to the user characteristics and the
displays available. In contrast, the novel approach presented
by this work proposes the utilization of sensing/actuation
devices and appliances as the interaction resources of an
Aml system.

The main contribution of this work to its research field
consists in providing a new level of abstraction that isolates
applications from devices at the user interaction level. In
the proposed framework devices are seen as generic user
interaction resources, thus developers can achieve a great
level of decoupling between their AmI applications and the
hardware devices used to interact with the user and the
environment. This decoupling makes applications more
easily adaptable to new scenarios.

PROPOSED SOLUTION

The proposed solution, called Dandelion [14], is being
developed integrated in the HI’ general purpose Aml
development platform [4]. Dandelion aims to facilitate the
migration of HI applications by decoupling them from the
interaction devices. An overview block diagram of the
solution can be seen in Figure 1. It uses a model-driven
approach in which a series of models and device selection
algorithms are used to build, at runtime, as the user moves

Application 1/O m
Data Model & Actions g EE

ion Logic

Application
Agent

Abstract Widgets

Application Controller (UsiXML Al units)

Model Models

Abstract Ul ’ ‘ Context ‘

FIO Agent [Final Interaction Objects

oo ~

GIP

User Interface FIO
Manager Repository
GIP

x x A

v v ¥

UniDA devices

Other hardware
devices

Display Manager

FIO Selection

Algorithms

Figure 1. Block diagram of the proposed solution for UI adaptation in AmlI

from one place to another, a Ul that is appropriate for the
user characteristics and preferences, the environment
conditions and the devices available in each location.

The HI’ [4] platform conceptual architecture follows a
layer-based design that enables the division of system
elements into levels. From bottom to top, the uniform
device access layer, UniDA [15], provides homogeneous
and distributed access to the physical devices. The sensing
and actuation services layer provides virtual representations
of sensors and actuators in the physical environment. The
service layer is populated by components that provide
shared functionalities to other services or applications.
Finally, the applications layer is at the highest-level, and
hosts the elements implementing applications that provide
particular functionalities a user expects from the system.

Inside the HI’ platform, Dandelion is integrated in the
application and device abstraction layers by implementing a
distributed user interface system inspired by the principles
of the Cameleon-rt [12] reference model.

Dandelion follows a model-driven approach based on the
recognized approaches proposed by UsiXML [15] and
MASP [2, 11]. It reuses some of the models proposed by
UsiXML, but instead of relying on model transformations
at design time, it takes the MASP approach, using the
models at runtime, along with real-time information of the
environment and user, in order to build the user interface.
The main difference with MASP is that Dandelion is
focused on distributed Uls using not only displays, but
every device available in a smart environment, like home
automation devices, appliances or sensors. Thus, Dandelion
is especially tailored for AmI applications requiring multi-
modal interaction using everyday objects, but it can also
accommodate GUIs, voice or gesture recognition.

The system is designed to support an arbitrary number of
models describing the application domain, its interaction
requirements, the user, the environment and the resources
available. The information in those models is used to select
the interaction elements (mainly automation devices and
appliances), available in the environment, that better suit
the requirements of the application, the user and the
environment. Once selected, those interaction elements are
transparently and remotely connected to the application
logic, so that it does not need to know anything about the
interaction technologies and devices it is using.

The diagram in Figure 1 shows an overview of this process.

Along with the application logic, implemented as a multi-

agent system in the application layer of HI’, the developers

provide:

1. a description of the Ul (AUI), using the UsiXML
abstract Ul model, that generically describes the user
interaction requirements of the application;

2. a set of associations between AUI elements and some
data and action objects that will be used as the model to
manage data input/output with the user.

Those associations are managed by an application
controller using the observer pattern to monitor the data
objects. When the application modifies a data object, the
controller redirects the change to the UI, and vice versa.
The application controller is a physical component of the
application agent, so that the Final Interaction Objects
(FIO) agents and the application agents interchange
messages directly.

As can be seen in Figure 1, the final implementation of the
Ul is provided by a set of mappings between the AUI
elements and the FIOs. This mapping is 1..N, so that the
same AUI can be associated with many FIOs. It is stored by
the application controller, but it is generated, managed and
updated, at runtime, by the User Interface Manager (UIM).
It uses the information available in the AUI model, the user
model and the environment model, to select among the
different interaction resources available in the environment.

FIOs are abstractions of devices and appliances capable of
input/output to the user, like switches, lamps, presence
sensors, alarm systems, or even higher level interaction
resources, like gesture or voice recognition software. They
are a key element of Dandelion, because they implement
the concrete logic required to interact with a device, and
because they provide a generic view of the device as an
interaction resource. Their goal is to decouple the rest of the
system from the underlying interaction technologies, and
this is achieved by hiding the device behavior behind the
General Interaction Protocol (GIP) interface

The GIP is another key aspect of this work. It is an event
based multi-agent communication protocol which provides
a common interface for interaction resources. The set of
events defined is inspired by the I/O actions supported by
the AUI model of UsiXML. Figure 2 shows an overview of
the protocol. Its operation can be summarized with a simple
example. An application changes a data object that
represents the output state of an alarm. The controller
detects the change, and sends an output event to the
associated FIO/s. They provide the output to the user
depending on the concrete implementation of each FIO, for
example powering on a light or playing a sound.

Application Controller

| Abstract Widgets FIO Mapping ‘

interaction hints.

Generic Interaction Protocol

output
focus
selection
input
action

Final Interaction Objects

UniDA or any other device AP|

[Interaction Devices]

Figure 2. Overview of the GIP for abstracting devices as
interaction resources

FIOs are implemented as distributed agents in the
sensing/actuation layer of HI’. They implement the GIP
interface, but it is not mandatory for a FIO to support all the
GIP events, only a subset of them. There can be devices
that support only user input, only user output, etc. The
supported events are specified in the FIO description, which
is used by the AUI during the FIO selection process.

GIP events can have attached a set of variables that are used
by developers to provide interaction hits to the FIOs. One
example could be an urgent property, or a color property, so
that a FIO can adapt (if possible) its response to more
specific requirements of an application. Those interaction
hints are specified by applications in the association
between AUI elements and the I/O data model.

A FIO can encapsulate any kind of interaction resource: a
home automation device, a hand-gesture recognition engine
or even a GUI. Developers of FIOs are only required to
export the interaction capabilities of the resource as GIP
events. Thus, for example, a home automatic switch will
only provide an action event, while a GUI form for entering
data will provide input/output events with a string property
for each data field, and maybe an action event for a button.

Even if GUI or other interaction technologies are supported,
we are especially interested in supporting user interaction
through everyday objects. Therefore, in order to facilitate
the development of FIOs that implement the concrete logic
required to interact with those kinds of devices. We have
developed UniDA [15] as the hardware abstraction layer of
HE, but also as a solution for hardware access within
Dandelion. While FIOs provide a common interface for any
kind of interaction resource, UniDA provides a common
interface to any kind of hardware device. Every kind of
device is accessed using the same paradigm and concepts,
and each class of devices is reduced to a set of common
operations, so it is possible to use entire classes of devices
from different manufacturers or technologies using the
same exact APL.

CONCLUSION

The application of model-driven engineering techniques
combined with interaction resource selection algorithms
seems a very promising approach to alleviate the problems
of developing user interfaces that require the integration
and utilization of many different technologies and devices.

The current implementation of Dandelion includes: a device
abstraction technology to decouple applications from the
hardware technology of their interaction devices; a
component migration system to physically move HI’
components from one platform to another and a distributed
UI system, allowing applications to operate distributed and
decoupled from their interaction resources.

The next step in this work is the development of FIO
selection algorithms to adapt the application to changes in
the environment by changing the FIOs mapping at runtime.

REFERENCES

1. Dadlani, P, Peregrin Emparanza, J, & Markopoulos, P.
Distributed User Interfaces in Ambient Intelligent
Environments: A Tale of Three Studies. Proc. 1st DUI,
University of Castilla-La Mancha (2011), 101-104.

2. Blumendorf, M., & Albayrak, S. Towards a Framework
for the Development of Adaptive Multimodal User
Interfaces for Ambient Assisted Living Environments.
Proc. 5th UAHCI, Springer (2009), 150-159.

3. Abascal, J., & Castro, L. F. de. Adaptive interfaces for
supportive ambient intelligence environments. Proc.
11th ICCHP, Springer (2009), 30-37.

4. Paz-Lopez, A., Varela, G., Becerra, J.A., Vazquez-
Rodriguez, S., & Duro, R. J. Towards ubiquity in
ambient intelligence: User-guided component mobility
in the HI3 architecture. Science of Computer
Programming, 11/2012, Elsevier (2012).

5. Collignon, B., Vanderdonckt, J., & Calvary, G. Model-
Driven Engineering of Multi-target Plastic User
Interfaces. Proc. 4th ICAS, 1IEEE (2008), 7-14.

6. Ranganathan, a., Chetan, S., & Campbell, R. Mobile
polymorphic applications in ubiquitous computing
environments. Proc. 1st MOBIQ., 2004, 402-411.

7. Satoh, 1. Mobile applications in ubiquitous computing
environments. IEICE TRANS. COMMUN. VOL.E88-
B, NO. 3, 2005, 1026-1033.

8. Aizpurua, A., Cearreta, 1., & Gamecho, B. Extending in-
home user and context models to provide ubiquitous
adaptive support outside the home. User Modeling and
Adaptation for Daily Routines, Springer (2013), 25-59.

9. Mifién, R., & Abascal, J. Supportive adaptive user
interfaces inside and outside the home. Advances in
User Modeling, Springer (2012), 320-334.

10. Thevenin, D., & Coutaz, J. Plasticity of user interfaces:
Framework and research agenda. Proc. INTERACT'99,
I0S Press (1999), 110-117.

11.Blumendorf, M., Lehmann, G., & Albayrak, S. Bridging
models and systems at runtime to build adaptive user
interfaces. Proc. 2nd EICS 2010, ACM (2010), 9-18.

12.Balme, L., Demeure, A., Barralon, N., Coutaz, J. &
Calvary, G. Cameleon-rt: A software ar-chitecture
reference model for distributed, migratable, and plastic
user interfaces. Proc. EUSAI 2004, Springer-Verlang
(2004), 291-302.

13. W3C Multimodal Interaction Framework. W3C (2011).
14. Varela, G., et al. Decoupled Distributed User Interfaces
in the HI3 Ambient Intelligence Platform. Proc. 6th

UCAmI 2012, Springer (2012), 161-164.

15.Limbourg, Q., Vanderdonckt, J. UsiXML: A User
Interface Description Language Supporting Multiple
Levels of Independence.Engineering Advanced Web
Applications, Rinton Press, Paramus, 2004, pp. 325-338.

16. Varela, G, Paz-Lopez A, Becerra, J. A., Vazquez-
Rodriguez, S., & Duro, R. J. UniDA: Uniform Device
Access Framework for Human Interaction
Environments. Sensors 11 (10), MDPI (2011), 9361—
9392

