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Abstract  
A delay based artificial neural network is used to analyze turbulent flow signals obtained by a hot wire anemometer 
along time in different points within the wake of a circular cylinder. Values of the Reynolds number range from 2000 to 
8000, corresponding to late transitional or fully turbulent wake flows. The implemented trainable delay based artificial 
neural network is able to autonomously obtain the embedding dimension as well as the normalized embedding delay 
and permits performing short and long term predictions. The short term predictions are extremely accurate while the 
long term ones result in a sort of non linear filter able to extract the signal features concerned with the larger eddies and 
coherent structures present in the turbulent flow-field. 
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1. Introduction  
Turbulence in flows can be somehow referred to as a spatial-temporal chaos with a large number of degrees of freedom 
resulting in a wide range of scales. Being a deterministic phenomenon the classical approach was statistical Only during 
the last two or three decades some other approaches have been taken. It is important to point out that the dynamics and 
the transfer processes of momentum, heat and mass in most turbulent flows of interest are governed by the larger eddies 
and coherent structures embedded in these turbulent flows, while the smallest scales of turbulence are responsible for 
dissipation. Coherent structures usually appear at the transition stages of turbulence and remain present in the flow far 
downstream when the fully developed small isotropic scales of turbulence dominate the flow field. However, as is the 
case for other large scales of turbulence, they cannot be considered as a part of the fully developed turbulence. These 
facts are the bases of large-eddy simulation (LES) which is a promising approach for computing turbulent flows. In the 
LES approach only the evolution of the large scales is computed while the small scales of turbulence are modeled and 
filtered out after considering them almost isotropic. Also, in experimental and practical applications, the analysis, 
identification and monitoring of the larger structures can be used to control turbulence. [1] 
In our study, a hot wire anemometer is used to measure velocities in the turbulent wake of a cylinder. For many years, 
the hot wire anemometer has been a basic tool for experimental characterization of turbulent flows. The main 
characteristic that makes this device very suitable for turbulence measurements is its ability to measure flow 
fluctuations up to the hundred thousand Hz range. Notwithstanding the dramatic advances achieved during the last 
decades in developing new experimental flow measurement and diagnostic apparatus, none of these are able to beat the 
frequency response of the hot wire anemometer [2]. 
The flow around a circular cylinder and the wake behind, have been extensively studied in the past. Recently it is been 
used as a work bench for experimental and numerical studies. The wake presents many different modes and regimes 
governed by a single control parameter; the Reynolds number, which is defined as de ratio between inertial and viscous 
forces. For a cylinder of diameter D moving at velocity V in a fluid of density ρ and viscosity μ, the Reynolds number 
has a value Re=ρVD/μ.. Some of the regimes characterizing this flow are represented in Figure 1. At Reynolds numbers 
higher than 35 the wake starts to oscillate and soon after begins forming pairs of vortices shed alternately from each 
side of the rear surface of the cylinder; this is called the Karman vortex street. As the Reynolds number rises, the wake 
becomes more complex and turbulent, but still the vortices of the Karman vortex street can be detected in the form of 
coherent structures set in the turbulent wake up to very high values of the Reynolds number. It is important to notice 
that for Re < 200 the flow is basically laminar and the Karman vortex street persists very far downstream of the 
cylinder, but for higher values of the Reynolds number the wake becomes turbulent, the Karman street starts to 
degenerate into a turbulent wake and the vortices, interacting in a complex manner, become unstable and start to split 
into smaller ones vanishing after a short path downstream. In any case de cylinder can be seen as a source of 
perturbation in the unperturbed flow-field. The higher the Reynolds number, the higher the turbulence becomes and, 
consequently, the length where the Karman street can be detected becomes shorter. Very complicated three dimensional 
patterns appear in the flow-field during the transition from a well organized, periodic and two-dimensional Karman 
street to a fully turbulent wake. The visualization and analysis of such patterns has been the subject of several 
experimental and numerical studies as, for instance, in [3] and [4]. 
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The dimensionless cylinder shedding frequency is called the Strouhal number; St=fD/V. The variation of the Strouhal 
number with the Reynolds number in the wake of a circular cylinder for a laminar incoming flow is represented in 
Figure 2 using data coming from many sources. Data is taken in the vicinity of the cylinder and spread increases with 
distance or if turbulence in the incoming flow does. For Reynolds numbers from 2⋅102 to 105, the Strouhal number 
appears to be approximately equal to 0.2. As a consequence, after the Strouhal number definition it can be deduced that 
the distance between two consecutive vortices in the Karman street along the main flow direction is about 5 cylinder 
diameters. [5] 
Particularizing to the application of this paper, an artificial neural network is the means for the identification of the 
coherent structures within the turbulent wake. The analysis is made on the signal taken along a period of time in a given 
spatial position by a hot wire anemometer. In the realm of signal identification and modeling, the main problem is to 
obtain a model of the signal that is as accurate as possible and which permits performing short and long term 
predictions. This is, we are interested in the dynamic reconstruction of the measured signal and we are mainly 
concerned with the larger eddies and coherent structures present in the turbulent flow-field, which are related to signal 
fluctuations with larger characteristic time variation.  

 
In the literature one can find different methods to identify coherent structures in turbulence, such as flow visualization, 
spectral and correlation analysis, principal component analysis or proper orthogonal decomposition, conditional 
sampling and pattern recognition among others. Despite their potentiality, the use of artificial intelligence and neural 
networks for this purpose is rare. One of these few papers that are somehow related to the scope of the present work, is 
the paper by Fere-Gine et al. [6]. They use a Fuzzy Artmap Neural Network to analyze the coherent structures 
embedded in two-component velocity signals measured simultaneously by an array of five hot wire probes in a 
turbulent wake behind a circular cylinder.   

Figure 1.- The wake of a circular cylinder at three different flow regimes. 

Figure 2.- Strouhal number versus Reynolds number in the wake of a circular cylinder. 
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Usually, most neural network based implementations have not taken into account the basic premises on which the 
modeling of signals must be based, that is, that in order to model a time dependent non linear signal one must be able to 
define its state space, or an equivalent state space, in an unambiguous manner in order to prevent multivalued sets of 
coordinates which would lead to ambiguous predictions. In fact, one of the best areas to appreciate this is in the case of 
chaotic time series, where if the state space is not well chosen the orbits of the series in this space will cross, generating 
points of ambiguity. In this article we make use of a trainable delay based artificial neural network that directly 
implements a form of the embedding theorem [7] [8] with the advantage of being able to autonomously obtain the 
embedding dimension and the normalized embedding delay. 
As a first step in directly training the delays introduced in a generalized synaptic delay network using a gradient descent 
method, we have developed the DTB algorithm [9].  It leads to easy and precise training of temporal event processing 
networks straight from the input signals, with no windowing or preprocessing required and, what is more important, the 
embedding dimension does not have to be defined a priori. In the context of signal processing, and taking into account 
that many signal related correlations take place in the frequency domain, we have now added the possibility of 
including product terms in some of the nodes which, combined with the automatic selection of the signal points to be 
multiplied (through the training of the delay terms), allow for learnable signal correlation operations within the network. 

2. EXPERIMENTAL SET-UP  
The experiments were carried out in our Low Turbulence Subsonic Open Jet Wind Tunnel (LTOJ-1) sketched in Fig. 3. 
This is a low speed low turbulence wind tunnel specially designed and built in house for anemometer calibration and for 
basic research purposes. The tunnel produces a 300 mm wide open free jet with a velocity uniformity of better than 1% 
and turbulence level of less than 1%. It is driven by a centrifugal blower provided with an 11 kW asynchronous AC 
motor. An electronic invertor is used for controlling the motor speed and provides a simple continuously variable air 
speed control from 0 to 45 m/s. This invertor produces a variable frequency power supply to the AC motor and is 
controlled by a DC signal from 0 to 10 volts proportional to the output frequency.  

 
A software package constituting a virtual instrument was specially developed in house to perform data acquisition and 
control of both the hot wire anemometer processor trough a RS232 line and the wind tunnel through an output channel 
of the acquisition board connected to the invertor control line. The virtual instrument is a new version of the one 
presented in [10]. A set of sensors are arranged to measure the different physical magnitudes needed within this virtual 
instrument to control the wind tunnel motor by means of a PID controller embedded in the software package. Thus, a 
differential pressure transducer connected to a Pitot-static Prandtl type pressure probe allows the measurement of the 
main airflow dynamic pressure Pd. To obtain the wind speed from this magnitude we must know the density of air 
under the test conditions, for this purpose a barometric pressure sensor and a temperature sensor are used. Air density is 
calculated from the estate equation as ρ=Pa/RgTa, being Rg the air constant and Pa and Ta the ambient pressure and 
temperature respectively. Data from an electronic hygrometer are also acquired and used to correct the air density value 
for relative humidity effects. Then the air velocity is calculated by using the Bernouilli equation as V=√(2Pd/ρ). All the 
mentioned sensors, as well as the hot wire anemometer output signal and the AC motor invertor control line, are 
connected to the data acquisition board installed in a personal computer trough a connection box where power supplies 
and filters for the sensors are installed. The experimental set-up is schematically represented in Fig. 4.  

Figure 3.- The LTOJ-1 wind tunnel.
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A circular cylinder with a diameter of 8 mm is placed vertically in the test section at the open jet exit. The Reynolds 
number is used as the main control parameter. According to the expression given below, this number depends on the 
cylinder diameter and on the air velocity, density and viscosity. The cylinder diameter is passed to the software package 
as a parameter, the air density and velocity had been already calculated and the air viscosity is obtained from the 
measured ambient temperature by using a simplified correlation. The software package has been developed to be able to 
calculate the Reynolds number in real time and to adjust the wind tunnel speed through the embedded PID controller to 
stabilize its value within 1%.  
Velocity measurements are taken by means of a commercial TSI Flowpoint hot wire anemometer at positions placed 10, 
20 and 40 diameters downstream of the cylinder, these distances correspond, respectively, to 2, 4 and 8 wave lengths of 
the von Karman vortex street. In the first position, the characteristic frequency should be distinguishable by traditional 
means, e.g. Fourier transform, up to Reynolds numbers higher than 106, as shown in Figure 2. In the second position the 
increased turbulence downstream makes the corresponding spectrum peak diminish until it vanishes for Re in the 103 
range. In the third position the vanishing of the power spectrum peak occurs at Re values of only a few hundreds.  
We considered values for this parameter ranging from 2000 to 8000, corresponding to a late transitional or almost fully 
turbulent wake with a von Karman vortex street still present. As we are interested in extracting the main signal features 
under extremely noisy conditions, the main flow turbulence level was forced up to 2% during the tests, so as to increase 
the spread shown in figure 1 and to increase complexity in the turbulent signal making it more difficult to analyze by 
linear means. Nevertheless, as the measurements are taken in the near wake, large eddies and coherent structures are 
present, resulting in strong fluctuations of the measured air flow velocities. 

3. DYNAMIC RECONSTRUCTION 
The problem usually referred to as Dynamic Reconstruction involves obtaining some type of description of a given 
chaotic time series obviating the need for detailed mathematical knowledge of the underlying processes that conform its 
dynamics.  
It is well known that the state of any dynamical system in a given instant of time may be specified by means of a state 
space vector. The coordinates of this state space vector are independent degrees of freedom of the system. In particular 
if, as in the case of Haykin and Principe [11], we consider a system described by a non linear difference equation: 
 

( ) ( )( )nxFnx =+1    (1) 
 
where x(n) is the d-dimensional state vector of the system in time n and F() a vector valued function.  
And we assume that:  
 

( ) ( )( ) ( )awnxhny +=    (2) 
 
is the time series measured at the output of the system in terms of x(n), where h() is a scalar valued function and w(n) 
represents additive noise that takes into account the combined effects of imperfections and imprecision in the 

Figure 4.- The experimental set-up.



observable. That is, y(n) is what we can measure and what we want to obtain a model for without having to resort to a 
precise description of the underlying mechanisms leading to it. 
The Embedding theorem [7] [8] states that the geometric structure of the mutivariable dynamics of the system can be 
unfolded from observable y(n) with w(n)=0 in a D-dimensional space constructed from the new vector: 
 

( ) ( ) ( ) ( )( )[ ]TR Dnynynyny ττ 1,....,, −−−=  (3) 
 
where τ is the Normalized Embedding Delay  usually taken as a positive integer, even though sometimes it may be 
useful for it to be a positive non integer.  
From this theorem, it is established that when there is a single measured quantity for a dynamic system, it is possible to 
reconstruct a state space that is equivalent to the unknown original space composed of all the dynamical variables using 
the D-dimensional vector yR(n) if D>=2d+1 being d the dimension of the state space of the system. D is called the 
embedding dimension.  
Basically this implies that if the system produces orbits in the original state space that lie on a geometric object of 
dimension d (not necessarily an integer), we can avoid having spurious intersections of the orbits, which would 
obviously result in points where there would be two or more possible next values, that is an ambiguity in the function, 
by seeing the object in another space of integer dimension D. The coordinates in this second space are nonlinear 
transformations of the original state-space coordinates. 
The main problem with this approach is that we require reliable estimates of the embedding dimension which are not 
simple to calculate, although several authors describe some methods for obtaining it [12] [13]. Another problem is the 
fact that the theorem has nothing to say on the choice of the Normalized Embedding Delay. In practice, τ is taken so 
that it is large enough for y(n) and y(n-τ) to be independent of each other and thus be coordinates of the reconstruction 
space, but not so independent as to have no correlation with each other. Some authors suggest that the best choice 
would be a τ where the mutual information for y(n) and y(n-τ) attains its first minimum [12] [14].  
It is clear that the strategies for obtaining these parameters are sort of “rule of the thumb”. Given the fact that they are 
critical for an appropriate reconstruction of the signals, in what follows we have decided to include these two 
parameters in the architecture of the network. Consequently, during the learning process both, the Normalized 
Embedding Delay and the Embedding Dimension will be autonomously selected. The former indirectly through the 
choice of what instants of time are considered for the reconstruction of the signal and the latter through the choice of 
how many of these instants are selected. 

4. Discrete Time Backpropagation with ∏ Units 
The artificial neural network we consider for training consists of several layers of neurons connected as a Multiple 
Layer Perceptron (MLP), it is represented schematically in Fig. 5. There are two differences with respect to traditional 
MLPs. The first one is that the synapses include a delay term in addition to the classical weight term. That is, now the 
synaptic connections between neurons are described by a pair of values, (W, τ), where W is the weight, representing the 
ability of the synapse to transmit information, and τ is a delay, which in a certain sense provides an indication of the 
length of the synapses. The longer it is it will take more time for information to traverse it and reach the target neuron. 
The second one is that some of the nodes implement a product combination function instead of the traditional sum. 
We have developed an extension of the backpropagation algorithm for training both parameters of the connections, and 
have called it Pi Discrete Time Backpropagation (Π-DTB) [15]. This algorithm permits training the network through 
variations of synaptic delays and weights, in effect changing the length of the synapses and their transmission capacity 
in order to adapt to the problem in hand.  
In addition, through the appropriate determination of the delay terms in the synapses the Π-DTB algorithm performs an 
automatic selection of the signal points to be correlated. Consequently, when speaking in the language of the dynamic 
reconstruction of signals, the network automatically obtains the embedded delay and embedded dimension. 
If we take into account the description of the network in terms of synaptic weights and synaptic delays, the main 
assumption during training is that each neuron in a given layer can choose which of the previous outputs of the neurons 
in the previous layer it wishes to input in a given instant of time. Time is discretized into instants, each one of which 
corresponds to the period of time between an input to the network and the next input. During this instant of time, each 
of the neurons of the network computes an output, working its way from the first to the last layer. Thus, for each input, 
there is an output assigned to it. 
In order to choose from the possible inputs to a neuron the ones we are actually going to input in a given instant of time, 
we add a selection function to the processing of the neuron. This selection function could be something as simple as: 
 

     
(4) 

 ⎩
⎨
⎧

≠→
=→

=
ji
ji

ij 0
1

δ



so that the output of a traditional (5) and a product (6) node k in an instant of time t is given by: 
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where F is the activation function of the neuron, hij is the output of neuron i of the previous layer in instant j and wik is 
the weight of the synapse between neuron i and neuron k. The first sum (or product) is over all the neurons that reach 
neuron k (those of the previous layer) and the second one is over all the instants of time we are considering. 
The result of this function is the sum or product of the outputs of the hidden neurons in times t-τik (where τik is the delay 
in the corresponding connection) weighed by the corresponding weight values.  
Now that we know what the output of each neuron is as a function of the outputs of the neurons in the previous layer 
and the weights and delays in the synapses that connect these neurons to it, what we need is an algorithm that allows us 
to modify these weights and delays so that the network may learn to associate a set of inputs to a set of outputs. The 
basic gradient descent algorithm employed in traditional backpropagation may be used, but we must now take into 
account the delay terms when computing the gradients of the error with respect to weights and delays. 
As shown in [9], these gradient terms are: 
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being Etotal the total squared error for all the training vectors and 
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where Tk is the desired output, Ok the one really obtained and ONetk is the combination of inputs to neuron k, when we 
consider output neurons. For hidden neurons connected to the input layer, and defining as before 
 

 
 (10) 
 
 

Figure 5 - Network used. 
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where index r represents the neuron of the next layer, whether output or hidden, we have the following derivatives for 
the weights and connections: 
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where the second derivative in (9) is the result of: 
 

       (13) 
 
 
 
 

when we consider neurons in a hidden layer. It may be observed that the derivative in hNet of equation (13) has been 
discretized in order to obtain (12), implicitly assuming there is certain continuity in the temporal variation of the outputs 
of the neurons, which in practice turns out to be a valid assumption. 
Regarding the product units in the first hidden layer, we have: 
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and the derivatives are: 
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where index r denotes the input nodes connected to the corresponding product hidden unit. The importance of the 
procedure is that now the appropriate delays for these connections, and consequently the temporal values that make up 
the product terms in the pi units are obtained automatically, and are not imposed beforehand.  
As we show, by discretizing the time derivative we obtain simple expressions for the modification of the weights and 
delays of the synapses, in an algorithm that is basically a back-propagation algorithm where we have modified the 
transfer function of the neuron to permit a choice of inputs between all of the previous outputs of the neurons of the 
previous layer. 

5. RESULTS  
In what follows we will present some results we have obtained from turbulent signals measured with a hot wire 
anemometer in the wake of a round cylinder, and which will indicate the capabilities of these networks to grasp the 
underlying structure of the signal and thus obtain very good prediction results, even when performing multi-step 
predictions under noisy environments. For clarity we have selected to present here a reduced number of test cases,  
enough to be representative of the different situations analyzed. This way, all the cases presented save for one were 
measured under ambient conditions with free air speed just about 7.6 m/s, matching a Reynolds number of 4000. Hot 
wire signals are taken at three positions placed respectively at distances of 10, 20 and 40 diameters downstream of the 
cylinder, which correspond to 2, 4 and 8 wave lengths from the perturbation source. Figure 6 represents the power 
spectra of these signals once their amplitudes have been normalized. In the first of these spectra (6.a) we can still see a 
peak at 200 Hz corresponding to St=0.2, but for the other two signals (6.b and 6.c) no significant peaks appear. This is 
quite meaningful according to the underlying physics, because near the perturbation source the coherent structures are 
strong enough to show their periodic characteristic, but the growing of turbulence downstream wipes this characteristic 
from the other two signals or, at least, it appears to be undetectable by traditional linear means.  
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As a first application, neural networks have been applied to predict the measured hot wire signals. Figure 7 displays the 
prediction obtained by the networks for the three above mentioned cases. The neural networks employed consisted of a 
single input (replicated into two inputs to make use of the product terms in the first layer), two hidden layers with 20 or 
30 neurons and a single output which provided the predictions different lengths of time into the future. For each case, 
every signal was treated separately and fed into its corresponding network through its single input, there was no 
previous windowing process and the networks were trained for 1000 to 3000 epochs on the real signal. The complexity 
of the signal increases from the first to the third case and, as a consequence, to model it precisely requires more 

Figure 6.- Power spectra of three hot wire signals taken at 10, 20 and 40 diameters downstream in the wake 
of a round cylinder with Re=4000.

(a) (b) (c) 

Figure 7 - Real signals (squares) and predictions (line) obtained by a 1-20-20-1 Π-DTB trained delay based 
network in the case of the top graph and 1-30-30-1 networks for the other two.  The signals correspond to the 

spectra of figure 6 (Re=4000). 
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complex networks leading to longer training times. In fact, the first spectrum only required 20 neurons in the hidden 
layers while the other two required 30 to obtain the same level of accuracy. As shown the figure, the predictions which 
the networks learn to perform are quite good; in fact, the MSE for these predictions are around 1.5x10-3. The power 
spectra of the predicted signals are displayed in Figure 8, they present the same characteristics as the real signals.  
As a second type of experiment, we trained the networks on the real signal and then used them as signal generators. In 
this case no signal input was provided to the networks from a certain point on and they were allowed to run in parallel 

Figure 8.- Power spectra of the signals predicted by neural networks represented in Figure 7. 
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Figure 9. - Real signal (squares) and signal generated (line) by a 1-20-20-1 Π-DTB trained delay based 
network operating as a multistep predictor using its own outputs as inputs for the next prediction. The 
signals are taken at 10, 20 and 40 diameters downstream in the wake of a round cylinder with Re=4000. 

 

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05

Time (s)

No
rm

al
iz

ed
 a

m
pl

itu
de

 

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05

Time (s)

No
rm

al
iz

ed
 a

m
pl

itu
de

 

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05

Time (s)

No
rm

al
iz

ed
 a

m
pl

itu
de

  

(a) 

(b) 

(c) 



with the signal using their previous outputs as inputs for the next predictions. That is, they were run as multistep 
predictors or signal generators. This was done in order to see how well they managed to capture the basic dynamics of 
the process. It must be pointed out again that the main objective of this work is to be able to capture the basic dynamic 
structure of the process underlying the signals independently from the noise they show and from the higher frequency 
components induced by perturbing phenomena and by the smaller scales of turbulence. Consequently, the objective is to 
obtain a repeatable dynamic pattern that is similar enough to the one underlying the signal so that we can make long 
term predictions on our phenomena. In other words, we expect that the trained neural network should generate a signal 
with the same features as the coherent structure present in the flow; therefore, the neural network should act as a non 
linear filter able to extract the main features of the coherent structures out of the rest of the complex signal. In the case 
of a cylinder wake, the coherent structures are periodic in their origin, so we expect that traces of this periodicity will be 
present where traditional signal analysis tools are not able to detect them. In the case these assumptions are correct; the 
power spectrum of the generated signal must have a peak at 200Hz corresponding to a Strouhal number of 0.2. 
Figure 9 shows the results of this experiment for the same networks used in the prediction cases but now running in 
their signal generation mode, that is with no real input. For the first position, 10 diameters downstream of the cylinder, 
after a short while, the generated signal becomes periodic; this is also the case for the signal taken 20 diameters 
downstream. However, for the position 40 diameters downstream, a periodic signal is generated but it is damped rather 
quickly. It is very interesting to observe how the power spectra of all these generated signals, represented in Figure 10, 
present the expected peak about 200 Hz. This means that the artificial neural networks have been able to extract out of 
the chaotic signal the information concerning the periodic generation of the coherent structures which appears not to 
have vanished completely in the turbulent wake. For the case where the measurements were taken further downstream, 
a second peak grows about 80 Hz, this means that for this position a second main oscillation appears in the signal. 

There are some significant remarks to be made. For the first signal, taken 10 diameters downstream, the power spectrum 
analysis is able to show that an important 200 Hz component is present in the wake. In this case, after a short transition 
where less remarkable features of the signal are progressively lost, the artificial neural network starts to generate a 
periodic signal corresponding to that frequency. For the second signal, taken 20 diameters downstream, the power 
spectrum analysis is not able to detect any dominant frequency. On the other hand artificial neural networks can 
generate for this case a periodic signal, as shown in Figure 10, but this will only happen if the network has been 
carefully dimensioned and set-up, in any other case a damped periodic signal such as the one shown for the case 40 
diameters downstream will be produced. Anyway, even when the generated signal is damped, it oscillates at the correct 
frequency, therefore the right flow characteristic is being extracted. This has also been the case for different Reynolds 
numbers between 2000 and 8000 used in the experiments. As an example, Figure 11 shows the generated signal and the 
corresponding power spectrum of a test case corresponding to a Re=8000, with air speed of 15 m/s and frequency of 

Figure 10.- Power spectra of the signals generated by neural networks represented in Figure 9. 
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Figure 11. – Left: Real signal (squares) and signal generated (line) by a 1-20-20-1 Π-DTB trained delay based 
network operating as a multistep predictor using its own outputs as inputs for the next prediction. Right: 
Power spectrum of the generated signal. Data taken 10 diameters downstream of a cylinder with Re=8000. 



400 Hz equivalent to St=0.2. From this spectrum we can see that the generated signal has a strong peak at the correct 
main frequency.   

6. CONCLUSIONS 
In this paper we have considered the problem of modeling and predicting the signals obtained from hot wire 
anemometer measurements by means of artificial neural networks that intrinsically contemplated the dynamical aspects 
of the model. That is, we have approached the signal reconstruction problem through the introduction of trainable delay 
terms in the synapses of the networks. These networks do not require any type of windowing and can be trained to learn 
the required embedding dimension and normalized embedding delay by the simple application of the signal through a 
single input as time progresses. To train these networks we have made use of the Pi-Discrete Time Backpropagation 
algorithm which considers delays in every synapse and, in addition, considers product terms in the first layer. 
The application we present corresponds to the prediction of the signal obtained by a hot wire anemometer in the 
turbulent wake of a round cylinder. These signals can become quite chaotic depending on the downstream position in 
the wake where the signals are measured and on the Reynolds numbers. We have chosen the test conditions to mach 
Reynolds numbers between 4000 and 8000. Hot wire anemometer data were taken at three positions located 10, 20 and 
40 diameters downstream of the cylinder. These positions correspond to the near wake, in the case of the first one, and 
to the fully developed wake in the case of the last one. 
The results show that the application of delay based networks is a very promising approach. The predictions obtained by 
the networks are quite good, and if we operate in a signal generation mode, that is, the network makes predictions using 
as inputs its previous predictions so that a new signal is generated, the resulting signal starts being quite similar to the 
real one, and then it degenerates to a periodic signal or a damped periodic signal. In all the cases tested, the main 
frequency of the generated periodic signal, damped or not, corresponds to the main periodic characteristic of the major 
coherent structures present in the turbulent signal. This is quite remarkable because for all present test cases, excluding 
the one of Re=4000 at 10 diameters downstream from the cylinder, traditional linear analysis tools are not able to 
extract this main frequency. Therefore, the use of non linear tools reveals that the periodic characteristic of the coherent 
structures in a turbulent wake persist a long way downstream from the point were traditional analysis tools are no longer 
able to detect it. 
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