Shipyard 4.0: The Ferrol Navantia Shipyard Model for Planning in Shipbuilding

Alejandro García del Valle – Head Modelling and Simulation: Joint Research Unit Navantia-UDC
Marcos Rouco Couzo, Mar Cebral Fernández, Marta Quiroga Pazos
Integrated Group for Engineering Research
Universidade da Coruña, Spain
1. Introduction
2. Simulation Model
3. Experimentation and Results
4. Conclusions
1. Introduction
Introduction

High international competitiveness

• Shortest delivery term
• Lower cost
• High level of quality

Need to manufacture

Complexity of shipbuilding process

Diversity and # of elements

• Unique (not serialized)
• High added value
• Long construction period

Product (Frigate)

Non lineal process

• Complex coordination between stages / workshops
2. Simulation Model
Model development

Frigate → 25 Blocks → 50 Sub-blocks

- Developed in ExtendSim
- Easy integration with SAP
- Excel interface for input data
- Connected with ExtendSim
- Results tables
- Gantt Chats
Model development

- 5 sub-blocks typology

<table>
<thead>
<tr>
<th>Main sub-blocks attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td># Web frames</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td># Longitudinal girders</td>
</tr>
<tr>
<td># Straight panels</td>
</tr>
<tr>
<td># Shell panels</td>
</tr>
<tr>
<td># Longitudinal profiles</td>
</tr>
</tbody>
</table>
Model development

- Input sequence

- Disaggregation process

Main data analyzed

- Sheets cutting lengths
- Welding lengths
- Sheets thicknesses
- Transport lot sizes
- Profiles dimensions
- Sheets dimensions
Model development
Simulation process

- **ERP (SAP)**
 - Excel (Model data)
 - Blocks and subblocks data

- **Excel VBA Macro**
 - Ratios
 - Resource capacity

- **Extendedsim**
 - Simulation Model

First phase:
- General scheduling
- Gantt Chart

Second phase:
- Detailed scheduling
- Specific analysis by workshop
Model & Hierarchical blocks
4. Experimentation and Results
Experimentation and results

Exp. 1 – Improved production scheduling

• Aggregate planning at early stages of the project
• Objective: to find an improved production scheduling.
 • From first stage: first workshop
 • To last stage: arrival at the slipway
• Considerations:
 • Blocks assembly sequence in the slipway is fixed and predefined
 • Hard planning work
 • Big differences between blocks in dimensions, shape, structural conditions, etc.
 • Non linear process
 • Early stages of the project, when detailed technical data are unavailable
Experimentation and results

Exp. 1 – Improved production scheduling

- Improved ship scheduling

Real ship scheduling
- Long manufacturing times
- Unbalanced resources.
- Long waiting times.

Improved ship scheduling
- 30% makespan reduction.
- Balanced resources.
- Buffers reduced
Experimentation and results

Exp. 1 – Improved production scheduling

Available bays in Subassembly workshop.

Real ship sequence

Improved ship sequence

• Less balanced utilization rate

• More balanced utilization rate
Experimentation and results
Exp. 1 – Improved production scheduling

Buffer of blocks waiting for painting process

Real ship sequence

- 12 blocks in buffer
- Long waiting times

Improved ship sequence

- 6 blocks in buffer
- Short waiting times
Experimentation and results

Exp. 2 – Analysis of the Cutting & Welding workshop

- Very important: 1st stage of the process
- All other stages need that all parts arrive as soon as possible
Experimentation and results

Exp. 2 – Analysis of the Cutting & Welding workshop

• **Level**: detailed.

• **Objective**: Analyze the workshop to detect the limiting resources and select the most appropriate actions to improve its utilization rate and thus reduce the workshop's makespan.

• **Results**:
 - The welding station (VRWP) of the web line is the bottleneck of the workshop.
 - Utilization rate mounting station (SSMP): 29%
 - Utilization rate welding station: 97.2%

• **Actions**:
 - Increase of the capacity of the welding station in the web line would increase the overall capacity of the workshop, reducing the makespan of this workshop by 50%.
Experimentation and results
Exp. 3 – Panel line: maximum capacity analysis
Experimentation and results

Exp. 3 – Panel line: maximum capacity analysis

• **Level**: detailed.

• **Objective**: Determine the maximum capacity of the panel line (Cutting & Welding workshop).

• **Experiment**:
 • The line is saturated, generating all part and components of 2 frigates at start time.
 • Different scenarios are generated, changing the number of Mounting and Welding stations and the shifts number.
Experimentation and results

Exp. 3 – Panel line: maximum capacity analysis

- **Results**: The best scenario is the one with 2 Mounting and 2 Welding stations.

- # shifts: depend on the capacity needed to meet the milestones agreed with the client and the associated costs.

<table>
<thead>
<tr>
<th>Shifts</th>
<th>Mounting stations</th>
<th>Welding stations</th>
<th>Maximum capacity (95% CI) (panels/week)</th>
<th>Maximum capacity (95% CI) (blocks/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.598 ± 0.015</td>
<td>0.411 ± 0.002</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.756 ± 0.014</td>
<td>0.436 ± 0.002</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4.646 ± 0.042</td>
<td>0.735 ± 0.007</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4.759 ± 0.042</td>
<td>0.753 ± 0.007</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3.686 ± 0.026</td>
<td>0.583 ± 0.004</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5.138 ± 0.060</td>
<td>0.813 ± 0.010</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5.487 ± 0.044</td>
<td>0.868 ± 0.007</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9.340 ± 0.110</td>
<td>1.478 ± 0.017</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9.550 ± 0.066</td>
<td>1.511 ± 0.010</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7.365 ± 0.053</td>
<td>1.165 ± 0.008</td>
</tr>
</tbody>
</table>
5. Conclusions and Future Research
Conclusions (a)

- A multilevel simulation model for a shipyard has been proposed and validated.

- Two level: aggregate (first stage of the project) and detailed (when project has started).

- Software used: Extendsim. Right now: is a **3D model using Flexsim**.

- 3 experiments

- **Experiment 1**: aggregate level. Useful at the beginning when little information in available. The modeled obtains an “improved scheduling” *reducing the makespan by 30% with a balanced use of resources*.
Conclusions (b)

- **Experiments 2 and 3**: detailed level. Aiming at a detailed analysis of first workshop of the shipyard: the Cutting and Welding workshop.

- Experiment 2 allows to characterize the bottlenecks and how the capacity of this workshop affects the makespan.

- Experiment 3 allows to determine the maximum capacity of the panel line (Cutting & Welding workshop) and find the best alternative to fulfill the milestones of the client.

- The model will be implemented in the Navantia military shipyard (Ferrol, Spain).
Conclusions (c)

• Probably: the first complete virtual shipyard with all its workshops.

• The model allows to check many scenarios and all “building strategies”.

• The model will be implemented in the Navantia military shipyard (Ferrol, Spain).

• Many results has already been implemented.

• This virtual shipyard is a competitive advantage of Navantia for doing business with its clients.
Future Research

- Develop scheduling heuristics in order to get an “optimized” schedule that minimizes the total makespan.

- Get detailed 3D models of each of the workshops of the shipyard.

- Optimize the shipyard layout using simulation.
Thanks for your attention