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The management of a large electric power system requires detailed knowledge of what 
is happening in each one of its nodes (power sources, power drains) and branches 
(power lines connecting nodes) in any given instant of time so that efficient use of the 
resources can be made and incidences detected. The knowledge about the networks is 
obtained by means of state estimation techniques based on statistical inference using a 
set of redundant measurements. The measurements that are usually considered are 
voltages in the nodes, active and reactive power flow in the branches and injection in 
the nodes. There is a non linear relationship between the measurements obtained (z) and 
the state of the system (x). This relationship is affected by the inherent errors of the 
measurement equipment (e) 
.  

z=h(x)+e 
 
Obviously, for the system to have a solution for x the set of measurements must be large 
enough and their locations appropriate for the system to be solved (rank of h must be at 
least as large as the size of x). When these conditions are met the system is said to be 
observable.  
Determining the observability of a system is not a simple task in large power systems. 
Two main approaches have been followed in the literature in order to address it. On One 
hand, some authors have resorted to numerical methods trying to determine the range of 
the Jacobian matrix corresponding to h(x). Within this group we may find [1][2][3]. 
Due to the precision problems of numerical methods some authors have proposed 
approaches based on graphs of the power systems [4][5][6][7]. These methods have 
been called topological methods.  The basic idea of topological methods for determining 
observability is based on the seminal result by Krumpholz and col [4] whereby a system 
can be said to be topologically observable with respect to a measurement set consisting 
of one voltage magnitude measurement and paired P, Q measurements if and only if 
there exists a spanning tree of the system of full rank. In practical terms, we need to find 
a spanning tree that contains all the nodes in the network and where the branches have 
measurements assigned to them. To this end, the measurements that are available in the 
network are assigned to branches following two criteria: The power measurements in 
the branches of the graph are assigned to the branches of the tree corresponding to their 
location. The node power measurements are assigned to one (and only one) of the 
branches that converge in the node. It is important to take into account that a 
measurement can only be used once in the construction of the tree. 
To address the problem of finding this spanning tree many heuristic solutions have been 
proposed such as [1][2][3], they usually differ in the algorithm they use for assigning 
node measurements to branches when constructing the tree, but their basic procedure is 
very similar in terms of reading the network sequentially and constructing a tree in a 
stepwise fashion. As with most tree construction techniques, these approaches are very 



prone to getting stuck, that is, running out of possible paths before achieving a full rank 
tree due to previous inadequate selections of branches to follow in the power system 
graph. As a consequence, backtracking  is usually required, which in the extreme case 
leads to a random search. This problem becomes even more poignant due to the 
quasiexponential growth of possible trees as the size and/or connections of the power 
system grow. 
In this paper we have chosen a different approach by using evolutionary techniques for 
the determination of the spanning tree of full rank. Some authors have already made 
some inroads in the use of this approach [8][9]. There are three hurdles to overcome in 
the use of a genetic algorithm based solution to determine topological observability: the 
encoding of the trees, defining the appropriate genetic operators and fitness function, 
reigning in sufficient computing power to be able to solve large problems. In this paper 
we will concentrate on the first two.  
Encoding valid trees that correspond to the power system we are considering is a 
difficult problem as there are many restrictions to the way in which they can be 
constructed. Consequently, if the encoding is not carefully handled, most of the 
chromosomes would represent invalid solutions, that is, trees that do not represent the 
network and/or trees that do not correspond to an observable solution, especially after 
mutations or crossovers. To verify all the constraints and generate trees that are always 
valid, in this work we have chosen an indirect representation of the phenotype in the 
chromosome. Our chromosomes do not represent the tree, but rather the way in which 
we construct the tree from the information on the real power system. Thus, when 
constructing a tree from the system we first obtain a connectivity matrix where we 
represent the connections between the nodes of the power system and whether these 
connections or the corresponding nodes have measurements. Once this matrix is 
constructed we can define the maximum connectivity Cmax as the number of connections 
of the node with maximum number of real connections. The chromosome that encodes 
the possible trees representing the power system will have a length of 2n integers, the 
first one between 1 and n and the rest with values between 0 and Cmax where n is the 
number of nodes in the power system. The chromosome may be written as 
P1,F1,P2,F2,….Pn,Fn. where Pi represents the relative number of the node and Fi the fan 
out of this node (number of branches departing from it). Thus, if we want to construct a 
tree from the chromosome we take P1 and go to the corresponding line in the connection 
matrix. We take a F1 (fan out value) and it will tell us the fan out of this node (number 
of branches originating in it). If this number is larger than Ci (number of possible 
connections for this node at this time), we take as effective fan out Fi

eff =Fi mod Ci 
otherwise Fi

eff=Fi. The following Fi
eff pairs in the chromosome will correspond to the 

nodes connected to node i. Whenever we use a node or a measurement it is eliminated 
from the connection table. This process is carried out recursively until the whole tree is 
constructed or a situation where no more nodes are available in the connection matrix 
lines corresponding to the leave nodes of the tree. 
This strategy for encoding trees in chromosomes provides a way to use a very simple 
genotype (2n integer values for a power system with n nodes) that always results in 
valid trees. Thus, now all the genetic algorithm has to do is to find one of these 
chromosomes that produces a whole tree, that is, a tree that contains all of the nodes in 
the power system. To do this we will define a very simple fitness function that increases 
with the number of nodes in the resulting tree with a modulating term that increases 
with the percentage of nodes outside the tree that contain node measurements. 
As a result of the simplicity of the genotypic encoding, the genetic operators that are 
used are quite straightforward. Take into account that we are handling integer value 



strings. Thus, crossover is a classical two point crossover and mutation is a simple 
random mutation. The only element we must take into account is the significance of 
mutations, a mutation in a gene in the left part of the chromosome produces more 
drastic changes in the resulting phenotype than one in the right part of the chromosome 
and this is taken into account through a positional weight term for the mutation. 
The preliminary results of applying this approach to the standard 14 and 24 node 
problems are very promising and complete results to these and larger problems will be 
presented as well as a comparison to the results of other authors. 
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