
Preprint submitted to Science of Computer Programming  April 30, 2012 

Towards Ubiquity in Ambient Intelligence: User-guided 
Component Mobility in the HI3 Architecture 

A. Paz-Lopez1, G. Varela1, J. A. Becerra1, S. Vazquez-Rodriguez1, R. J. Duro1 
1Integrated Group for Engineering Research 

University of A Coruña 
Ferrol, Spain 

 

 

Abstract 

Ambient Intelligence (AmI) systems need to be as transparent as possible, that is, their users 
should perceive only the effects of the features presented to them and, in some cases, some kind 
of interface. They should not be conscious of how these features are implemented, from a 
hardware or from a software point of view. 

In order to obtain such a high degree of transparency, it is necessary for the system to be able 
to provide its services regardless of location, adapting to the environment and the context in 
general and to the available hardware more specifically. This is known as ubiquity, and to achieve 
it requires considering many aspects, from security and privacy to system interoperability. This 
paper is mainly focused on the development of two elements related to ubiquity: physical 
migration of components between different platforms together with their associated runtime state, 
and the adaptation of those components to the destination platform and physical environment. 

These solutions are being addressed within our efforts for the development of a general-
purpose middleware for Ambient Intelligence in the framework of the HI3 project. 

 
Keywords: 
ambient intelligence, ubiquitous computing, mobility, service collaboration, smartphone 

 

1. Introduction 
One of the main goals of every Ambient Intelligence (AmI) system is to provide a seamless 

experience to their users. This goal is achieved in AmI systems by offering their functionality to 
users in the most transparent way possible, and transparent operation has multiple implications. 
For example, the interaction with the user should use natural interfaces as much as possible, the 
system should show autonomous and proactive behavior, it should require little intervention in 
system management and its functionality must be ubiquitous to the users. 

Ubiquity, namely the capability of the system to provide its services regardless of location and 

                                                             
Email address: gervasio.varela@udc.es (G. Varela) 
URL: http://www.gii.udc.es (G. Varela) URL: http://www.gii.udc.es (G. Varela) 



2 
  

the devices available, is an important topic in AmI, as it is a key enabler to release the user from 
the management of its applications and data. But ubiquity is not an easy goal and a lot of issues 
must be addressed. Interoperability between the different systems involved, fault-tolerant 
distributed operation, physical mobility of system components, self-organization of components, 
heterogeneity of devices and services available in each environment, user location tracking, and a 
lot of security and privacy issues, are among the most important ones. 

In the framework of HI3 [1], an integral Ambient Intelligence platform that has been in 
development in our lab for the last few years, this paper is focused mainly on the mobility of 
components and some of its associated issues, like reorganization of components and 
renegotiation and adaptation of behaviors after a component migration process.  

Component mobility has been addressed using tools and techniques from many different 
fields. The distributed computing world has provided general solutions for service-oriented 
systems and multi-agent systems, but special emphasis must be placed on more specific solutions 
coming from the area of ubiquitous computing. 

Multi-agent technologies are a prominent source of solutions for software mobility because of 
the benefits obtained by agents with the ability to migrate from one host to another [2]. The most 
popular multi-agent platforms have some level of integrated support for agent mobility [3] [4]. 
Commonly, the solutions applied by these technologies are simple, leaving in the hands of the 
developers a lot of responsibility, but they are also very general, so they can be used for multiple 
purposes. They provide only code and state migration support, and the main problem addressed is 
the interoperability between heterogeneous platforms, especially when dealing with platforms that 
have communications compatibility but are implemented with different base technologies 
(programming language, computer platforms, etc.). This problem has been recently addressed in 
[5] by specifying a common interface to manage the lifecycle of agents in a FIPA [6] platform, as 
well as by providing common agent models and data encoding mechanisms to enable 
interoperability between platforms that do not support the same programming languages. 

Even though they are not directly related to ubiquitous computing, Fluid Computing [7] [8] 
techniques are interesting proposals for user application mobility. They rely mostly on application 
state replication and synchronization, especially bearing in mind disconnection issues. In the case 
of [8] they also provide support for application code replication. 

Another important source for mobility solutions is the service-oriented field. The SOA 
approach has been widely used by ubiquitous computing solutions, and as such, many have 
recognized the necessity to provide support for service mobility. Two approaches that need to be 
mentioned are [9] and TaskShadow [10]. The former has extended the OSGi platform to support 
service replication and state synchronization between replicas. It has also increased the service 
description capabilities of OSGi with environment contextual information, so that the migration 
process can be driven by context changes. TaskShadow applies a very different approach to 
mobility because it does not rely on code migration. Instead, it introduces the concept of task as 
an abstract description of user intents and a set of functionalities required to perform some user 
task. It achieves user mobility migrating a user task by searching local services that fulfill the 
requirements of the task. 

The Aura [11] project is in some ways a precedent of TaskShadow. It also contemplates the 
idea of user task and relies on local components to fulfill the requirements of a task. Aura was 
designed for a classical desktop environment and thus it does not use context information to adapt 



3 
  

the user task to a new environment. 
Finally, another very clear example of mobility solutions is the Gaia OS project [12]. It 

provides a development framework that divides applications using the MVC pattern. The 
different components of the application can be migrated and replicated to different hosts. 

These projects are mainly focused on the distribution and migration of applications that make 
use of distributed devices (sensors, actuators and others) available in each environment. 
Therefore, even though they address important areas of application mobility, like the physical 
migration of the application, the discovery of compatible devices and some sort of component 
reorganization, they do not take into account specific topics of AmI applications, like user 
preference management, adaptation of behavior to the users and the environment, or context 
management. 

We have been working on the development of a complete component mobility solution for 
AmI applications and its integration in the HI3 architecture. The final objective is to propose an 
integral solution to the mobility issues that affect AmI systems, providing approaches for topics 
like physical component migration, negotiation and discovery of hardware requirements, 
component self-organization, component self-adaptation to user and environment preferences, 
user data privacy and component behavior security, as well as application interaction adaptation. 
This is a long-term development effort and this paper deals with some of the first developments in 
this area of HI3. 

Specifically, the mobility solution presented here adds to the HI3 framework the capability of 
migrating selected services and applications, including their current state, from one platform to 
another that is located anywhere. Migration is driven by a user mobile device, such as a 
smartphone, where the user transparently carries information about his/her applications and 
services. This information includes descriptions, requirements, preferences and needs. As the user 
goes from one environment to another, the mobile device searches for platforms capable of 
running the user’s components and negotiates the migration of these components with the target 
platform. Additionally, in order to facilitate the adaptation of migrated components to the new 
platform, this solution includes a semantic service description model and a matchmaking 
algorithm. They allow the definition of components in terms of their requirements in such a way 
that these requirements can be satisfied later at run-time by selecting the best services of the target 
platform to serve to the migrated components. 

The rest of the paper has been structured as follows. Section 2 is devoted to a detailed 
exploration of the mobility issues and benefits in an Ambient Intelligence environment. A brief 
description of the HI3 platform is provided in section 3, along with an explanation of the solutions 
developed, referencing the previously described use case example. Next, section 4 presents an 
example use case of the mobility capabilities of the HI3 platform. A comparison of solutions for 
software mobility, focusing on those projects related to smart environments or ubiquitous 
computing, and including the HI3 approach, is commented in section 5. Finally, section 6 presents 
some conclusions and future work. 

2. Challenges and Objectives 
As briefly stated in section 1, ubiquitous access to AmI systems is an important requirement 

to achieve the transparent operation goals of Ambient Intelligence. Ubiquity implies a lot of 



4 
  

benefits for the users, but it requires some complex requirements to be fulfilled [13]. This section 
presents the main benefits of ubiquity, and its associated requirements and challenges.  

Sometimes, the benefits of migrating components instead of remotely accessing services and 
devices to achieve ubiquity may not be obvious, because in many cases similar functionality can 
be achieved while maintaining the different elements of the system distributed in their original 
hosts. But migration support can improve AmI systems in aspects such as autonomy or network 
dependency.  

In a realistic scenario, the user cannot expect that any platform provide services with the 
functionality he needs. Furthermore, even if the services of the target platform provide the 
requested functionality, it is possible that they cannot remotely access to the user data. In these 
cases, it seems a better solution to migrate some user components from one platform to another, 
instead of only trying to make use of the available local services as other approximations do. 

Moreover, if all the components are executed locally within the data sources and end devices, 
the network bandwidth requirements are effectively reduced and the network latency is 
eliminated. This last point is especially important for interactive real-time systems like AmI 
applications, which must control devices to interact with a human populated environment. Thanks 
to migration, AmI systems can even continue operating in environments that do not have a 
network connection, or when the network fails. 

Regarding privacy and security, by migrating components, instead of letting some external 
software access and manage user data, the user components, with their user defined security and 
access control measures, directly manage the devices and data. As opposed to this, if the service 
was operating remotely, either local sensing data would be sent to a remote platform, or personal 
information about the user would be sent to the local services, both of which could imply a 
privacy problem. However, the migration of software components and data to different platforms 
may also involve severe security and privacy problems. One of the main concerns is ensuring that 
malicious components are not able to affect the normal operation of the target platform. 

With this in mind, the main goal of this work is to build the basis of a mobility framework that 
takes full advantage of migrating software components between different platforms without 
limiting the use of other approaches when appropriate. Thus, the proposed solution can be 
considered a hybrid approach, consisting of using existing local services when it is possible and 
migrating user components if existing local services cannot fulfill the user’s requirements.  

Furthermore, this solution follows a user-guided approach. That is achieved through the use of 
a user’s component running on a user’s personal device that has information about the user’s 
preferences and drives the migration process.  This approach to performing migrations, as 
opposed to the traditional method where the platforms monitor the users and actively make all the 
decisions about migration, increases user privacy. Unknown (to the user) remote platforms do not 
access user information in order to decide whether a migration is needed, rather, it is software 
running in the user’s device the one that takes the initiative and accesses the information from the 
different platforms and makes the decision about migration. This way, it is possible to incorporate 
information about platform trust to the decision process. 

However, as we introduced before, this approach comes with a lot of challenges that AmI 
systems developers must address: 

• Code transfer and state synchronization. The code of the components of a system needs 
to be transferred from one host to another, and the receiving host must be able to execute it 



5 
  

[14] [8]. Also the component state must be transferred and recomposed at the destination.  

• Resource allocation. The destination host must have the resources (computing, sensing, 
interaction, etc.) required by the component to operate [15] [9]. Furthermore, the migrated 
components can run into conflicts with previously existing components on the use of a 
resource.  

• Security and privacy. The system must safeguard the host environment from potentially 
malicious incoming components, for example, restricting the actions they can perform. And 
vice versa, protect incoming components from malicious hosts, so that components perform 
the actions they are supposed to [13].  

•  User interaction. The user interface components benefit most from mobility, as they need 
to use local devices and show low latency operation. The main challenges faced in this case 
are the heterogeneity of the interaction devices available in each environment, as well as the 
differences in interaction abilities of each user [16] [17]. Ubiquitous UIs must support 
multiple modes of interaction, as well as autonomous adaptation to the devices and 
interaction modes available for each environment and user.  

• Component relations managing. Components are not used in an isolated manner [10]. In 
general the users are carrying out many tasks at the same time, and the system can even be 
autonomously carrying tasks out for the users. The system must be able to manage the 
relations between the components and the tasks in order to optimize the migration process.  

As can be seen, Ambient intelligence platforms and middleware have in mobility an important 
source of challenges and opportunities to address in order to provide developers with powerful 
tools that facilitate the development of real ubiquitous applications. 

3. Component Migration and Adaptation in HI3  
This section is devoted to the description of the particular mobility solutions developed and 

their integration within the HI3 architecture for AmI systems.  
First of all, a brief description of the HI3 architecture is presented. This architecture provides 

support for the development and integration of applications and services in AmI environments. 
Additionally, this architecture provides the necessary concepts and tools to support other 
requirements such as mobility, connectivity and ubiquity. 

Figure 1 shows the conceptual structure of the architecture. It is a layer-based design that 
enables the division of system elements into levels, reducing the coupling between modules, thus 
facilitating abstraction and the distribution of responsibilities. The uniform device access layer 
(UniDA [18]) is in charge of providing homogeneous and distributed access to the physical 
devices. The sensing and actuation services layer provides services that are virtual representations 
of sensors and actuators in the physical environment, hiding part of the complexity of the real 
devices. The service layer is populated by components that provide shared functionalities to other 
services or applications. These two service layers include tools to facilitate the development and 
execution of services, including a service repository, semantic service definition capabilities, 
service composition facilities or service discovery mechanisms. The applications layer is the 



6 
  

highest-level layer and the one that hosts the elements representing and implementing 
applications that provide particular functionalities a user expects from the system. Finally, the 
context is a common access component for the three higher-level layers of the architecture. Its 
main objective is to represent the current state of the environment.  

In order to implement the previously presented conceptual model, a multi-agent technology 
based approach supported by the JADE agent framework was chosen. The components of the 
higher level layers in the HI3 architecture are implemented as collections of agents that 
collaborate for distributed task resolution. This implementation of HI3 has been structured as 
displayed in Figure 2. It provides a container for AmI services and applications with features such 
as high level inter-agent communication facilities, multi-agent models with support for the 
declarative definition of components, development utilities and distributed management tools. 
This middleware promotes the division of large and complex AmI systems into highly-decoupled 
components that dynamically and autonomously collaborate to solve complex tasks.  

A more detailed description of this architecture and multi-agent platform can be found in [1] 
[19]. 

3.1.   HI3 Mobility Subsystem 
As indicated above, the proposed mobility solutions are implemented on top of the HI3 

architecture and multi-agent platform. In this platform every component is a collection of agents 
considered as an atomic element that can migrate. This is a different approach from what is 
usually done in generic multi-agent platforms, as they often take agents as their atomic 
components. This decision was made because in HI3 every component (application, service or 
sensor/actuator) is a highly-coupled collection of agents that collaborate to offer a very particular 

 
Figure 1: HI3 software architecture 



7 
  

functionality. Consequently, it will generally be a good idea to keep them together in the same 
physical platform.  

HI3 follows a hybrid approach in terms of mobility. Even if all components have integrated 
support for migration, we are not expecting every component to be migrated; only those that 
make sense and will obtain some kind of benefit from a migration. This last point is within the 
responsibility of developers, but components that require interaction with users or the 
environment are usually good candidates, as they can benefit from being executed in a place that 
is physically near the hardware or users they have to interact with. 

Figure 3 displays a simplified class diagram of the structure of the HI3-mobility subsystem. It 
shows the main elements of the subsystem and their relationships in the component migration 
process. This procedure is divided into two main sub-processes. On one hand there is the physical 
migration of the component from one instance of the HI3 platform to a new one, and on the other, 
the adaptation of the migrated component to the new platform and physical environment. This 
procedure is complemented by the use of a mobile device to drive the migration process. It stores 
information about the user and his associated components, and proactively searches for valid 
platforms to deploy the components. 

The physical component migration process is mainly managed by the Mobile User Agent 
(MUA), the Component Mobility Manager (CMoM) and the Component Migration Manager 
(CMiM). The MUA hosts description information about user associated components, and 
searches for adequate platforms to deploy them. The MUA uses the CMoM to access information 
from the guest platforms, such as available services or resources. When the MUA detects a valid 
platform, it contacts the host CMoM to request a migration of some components to a guest 
platform. The CMiMs of the two platforms are in charge of managing the transfer of component 
code and state. 

 The adaptation of the migrated components to the new environment is mainly managed by 
the components themselves, but the system provides them with some helper capabilities. Service 

 
Figure 2: HI3 multi-agent platform. 



8 
  

components are catalogued in the system registry according to their functionality. Thus when a 
component arrives in a new platform, it can use the registry to find components in the new local 
platform that provide the functionalities they require. Furthermore, components can parameterize 
the functionality to request some specific behavior, and the registry will provide the service that 
best matches the desired behavior. 

The following subsections describe in detail the main aspects of the HI3-mobility subsystem. 
First, a solution based on a user mobile device to drive the migration of components is presented. 
Next, the details of the component migration strategy are shown. Finally, a solution for 
component adaptation to the target environment, grounded in an autonomous service composition 
framework, is described. 

3.2.   User-guided Component Migration 
The Mobile User Agent is deployed on a mobile device owned by the user, currently an 

Android smartphone, and stores a reduced view of the user profile and the description of the 
components associated to him. It uses this information in order to search for appropriate platforms 
for the user components. When found, it commands the CMoM to migrate the component to the 
new platform. In the current implementation the user specifies this command, but it is a future 
work to extend the MUA with autonomous capabilities to select destination platforms. 

The MUA is a central element in the HI3 mobility process. It drives the component migration 
process by selecting what components to transfer and where they must be transferred. By 
delegating this responsibility to a user owned device, the users benefit from an increased level of 
privacy.  

 In a classical AmI setup, the guest platforms available in each environment would be the ones 
in charge of monitoring the user state and deciding what to move, when and where. Namely, 

 
Figure 3: HI3 mobility subsystem simplified class diagram 



9 
  

those remote and unknown platforms would have to access user information in order to be able to 
make this kind of decisions and this may imply a privacy leak for the user. When using the MUA 
the tables are turned, and it is a user controlled software element the one that accesses information 
about the guest platforms, which are only able to access user information if the MUA decides so. 

Currently the MUA is implemented as an Android service and application. Figure 4 shows a 
block diagram of the MUA and its interactions with the host and guest platforms.  

Once the smartphone is connected to a WiFi network, it uses the mDNS protocol to discover 
the available HI3 platforms. As the MUA is not implemented using multi-agent technologies, due 
to implementation constraints in Android, it uses a RESTful web service to interact with the 
CMoM of the guest platform. The web service has two responsibilities. On one hand, in guest 
platforms it allows access to platform information such as available resources and functionalities, 
or software version. This information is matched with the user components and profile 
information, and it informs the user about what platforms are most suitable for each component. 
On the other hand, in the user host platform, it allows the MUA to access reduced views of the 
user information provided by the CMoM, so that it can be stored by the MUA. 

Regarding its implementation, on the platform side, the web service is implemented using 
J2EE and the Metro web service stack. It is deployed in a Jetty HTTP server embedded in the HI3 
platform which allows every HI3 component to present web interfaces implemented using J2EE. 
On the client side it uses the Spring Android library for accessing RESTful web services. Finally, 
as indicated before, in order to discover the available platforms, it uses the mDNS protocol by 
searching for a new service type, hi3-mobility. In the client side, it uses the jmDNS JAVA library, 
and the platform is announced using the avahi daemon in a GNU/Linux host. 

3.3.   Component Migration Process 
When a CMoM receives a request to migrate one or more components to a remote platform, it 

relies on the CMiM (there is one for each HI3 platform) for the migration. The CMiM must 

 
Figure 4: Mobile User Agent block diagram 



10 
  

transfer the three elements that make up an HI3 component at runtime. The workspace, which is a 
place where the component can store persistent data, the install, which is basically the component 
code, required libraries and configuration files, and the runtime state of the component. 

The JADE agent platform, on which the HI3 multi-agent platform is based, has integrated 
support for agent mobility. A JADE platform is divided into agent containers, so that one 
platform can have multiple containers in physically different hosts, and it supports agent mobility 
between containers. Unfortunately all containers depend on services provided by a main 
container, leading to the presence of a central point of possible failure. Furthermore, every 
container must be managed by the same administrators, so it is not possible to migrate 
components between platforms managed by different entities, which is a basic requirement in the 
case of ubiquitous computing and AmI.  

There exists an extension of the JADE platform to support inter-platform agent mobility [5], 
but it couldn’t be used in HI3 because it relies on the system class loader to obtain the code of the 
agents. HI3 uses private class loaders for each component, instead of having a single global class 
loader as in the case of default JADE, as a way to enforce code access privileges. This is 
important, not only due to security reasons, but also because it allows components to use different 
versions of the same code (for example libraries) without conflicting. This is especially important 
in open systems like those designed for AmI and even more when mobility is supported and 

 
Figure 5: HI3 component migration process 



11 
  

components from different authors and users should coexist. 
The migration process is basically implemented by the CMiM. As represented in Figure 5, the 

CMiM starts by requesting the remote platform to accept the new component. If the remote 
platform accepts the component, it answers with metadata about the platform, so that the local 
platform can check whether it matches the basic requirements of the component (mainly 
computing resources). Then it notifies the start of the migration process to every agent of the 
specified component. Each agent notifies its partners that it is going to be temporarily paused due 
to a migration and it then prepares its workspace for the migration and pauses its execution. 

When all component agents are paused, the CMiM uses JAVA serialization to serialize the 
state of each agent, and packs this state with the code of the classes directly used by the agent 
(extracted by introspection of the agent fields, methods, declared superclasses and interfaces). The 
state and code of each agent is sent to the new platform which then resumes the execution of each 
agent. 

Once the agents are running in the new platform, the local platform compresses and sends the 
component workspace and installation directories containing the complete code of the component, 
as well the libraries and other files it requires. This transfer is carried out asynchronously and, 
thanks to the classes included with the agent state, agents can start running before having the 
complete component code.  

While the few classes sent with the agent state may be enough to execute some simple agents, 
in the case of complex ones, they would need access to more code even before the component 
installation transfer is complete. To solve this problem, the class loader of the transferred agents 
is able to dynamically request classes from a remote CMiM (the CMiM of their previous local 
platform). The CMiM will check if the requesting agent is one of the migrated agents of the 
component holder of the requested code, and will pack and send the class code. 

Once the component install transfer is finished, the remote CMiM informs the local CMiM of 
the successful deployment of the new component and the end of the process. Finally, the local 
CMiM stops the execution of the transferred component and removes its agents (which were 
previously paused) from the platform. 

3.4.   Service Description Model 
Taking a look at the overall migration process, the convenience of automating and 

generalizing the process of restarting the execution of the migrated components on the target 
platform can be immediately appreciated. Thus, the system developed here provides a common 
model and a set of facilities the migrated components need in order to adapt their configuration 
and tasks to the new execution conditions. Specifically, the mobility system manages the process 
in charge of discovering the most appropriate local services that provide the functionalities the 
migrated component needs for its execution. This whole process is supported by the semantic 
description capabilities provided by the HI3 Service Description Model (HI3-SDM), which 
facilitates the development of self-describing modular components, which can be published, 
automatically located and invoked across the platform.  



12 
  

 The ontology based service description approach is, nowadays, the most promising solution 
for supporting autonomous service discovery and service composition processes [20] [21]. This 
approach specifies services and their properties using a common model (ontology), enabling the 
participating entities to reason and match service concepts. Currently, there are several ontology-
based languages for describing services, such as the Web Service Ontology (OWL-S) [22] and the 
Web Service Modeling Ontology (WSMO) [23]. Furthermore, there exist a large number of well-
established service discovery protocols and service communication protocols that makes the 
adoption of a single technology quite an unrealistic strategy, particularly in the broad and 
heterogeneous field of Ambient Intelligence. Thus, interoperability between different service 
providers and clients, without forcing them to use a particular technology, can be accomplished 
using a common service description model that enables mapping among the heterogeneous 
service description languages. This is the solution adopted in the HI3-SDM, which proposes an 
abstract model inspired by the AmIi service description model [24] [25]. 

As shown in Figure 6, the HI3-SDM supports the specification of both functional and non-
functional (i.e., QoS and security) service properties. The central element of the HI3-SDM is the 
functionality concept, which represents the description of any capability that can be advertised by 
a service or requested by a client. This description is expressed in terms of the information 
transformation produced by the service (inputs and outputs), the state change produced in the 
environment (effects) and the functionality category. These functional properties are defined 
referencing existing ontology concepts. 

In order to realize the abstract model presented in Figure 6, a complete service model 

 
Figure 6: HI3 Service Description Model (HI3-SDM) 



13 
  

implementation based on the OWL-S (”OWL for Services”) language was developed. OWL-S 
provides similar concepts to those defined by the HI3-SDM, and divides the description of 
services into three main aspects, “what a service does” (service profile), “how the service is used” 
(process model) and “how to interact with the service” (grounding) [26]. Figure 7 displays some 
design aspects of the implemented solution. The proposed approach abstracts and automates the 
tedious process of specifying the grounding of the semantic services. Specifically, this 
implementation provides a strategy to dynamically generate a Java Grounding that enables the 
automatic mapping between Java objects and OWL ontology concepts. Furthermore, this Java 
Grounding allows for the transparent invocation of a remote service using the communications 
capabilities of the underlying HI3 agent platform. 

Finally, another important component of the HI3-SDM is the matchmaker. The objective of 
the matching process is to compare requested functionalities to semantically described service 
advertisements stored in the service registry using inference rules enabled by ontologies [27]. As 
a result of the matching process, a service that matches the requested functionalities, expressed in 
terms of inputs, outputs and effects, can be selected and transparently executed by the runtime 
environment. 

3.5.   Negotiation and Conflict Resolution Strategy 
Once a component arrives at a new destination, it uses the HI3 Service Description Model and 

the system registry to find partner components to collaborate in task resolution. The arrival of 
new client components with different requirements could lead to conflicts with the current 

 
Figure 7: HI3 Service Description Model implementation grounded on OWL-S 



14 
  

operation of local components. Therefore a component request negotiation and conflict resolution 
system, was introduced.  

Figure 8 summarizes the main elements of this system that are in charge of managing the 
adaptation of the migrated components to the new platform and environment. In this process, 
when a migrated component arrives at a new platform, it can use the registry of the platform to 
find services that provide the same functionality it was using before the migration process. For 
this purpose, the migrated component creates parameterized component requests that semantically 
describe the desired functionalities using the HI3-SDM. Additionally, each component has a 
collection of clients that can store a list of previous active parameterized requests (subscribers) 
and incorporates capabilities for managing conflicts in the access to its functionality. Thus, when 
a new component requests an action and there can be a conflict with some resources managed by 
the service, they have integrated capabilities that solve possible conflicts with other currently 
active clients subscribed to the service. The detailed sequence of actions for this negotiation 
process is shown in the activity diagram of Figure 8. 

The parameter variables of each request designate different semantics about the desired 
action. These parameters are specified by the HI3-SDM and their meaning is dependent on the 
service implementation. By default, every request has an importance parameter, which designates 
how strong the commitment of the client is to the action requested. This parameter is used by the 
service in order to solve possible conflicts between different client requests. Services can 
instantiate a conflict resolution manager that includes different strategies to solve conflicts. In the 
current implementation only one strategy is available that support the resolution of conflicts using 
the importance parameter and a fuzzy inference system implemented with the jFuzzyLogic 
library.  
These strategies constitute a first step towards the autonomous adaptation of systems to the 
changing environments envisioned in fields like ubiquitous computing, ambient assisted living, 
ambient intelligence or human-centered computing. The proposed negotiation and conflict 
resolution strategy provides HI3 components with a series of mechanisms that allow them to adapt 
to new environments, with the restriction that every environment must share a common semantic 
description model. Nevertheless, to achieve a complete solution it is necessary to improve these 

 
Figure 8: HI3 service negotiation and conflict resolution process 



15 
  

strategies with characteristics such as interoperability among heterogeneous systems, 
computational load balancing, user and environment data privacy safeguard measures or 
capabilities to preserve the functional integrity of the whole system. 

4. Use Case Scenario for Component Mobility 
In order to better illustrate the inner workings of the presented solution, the current section 

will show an example use case of the mobility capabilities of the HI3 platform.  
The example has been implemented within the framework of an ongoing project we have for 

the innovation in the kitchen space. The project goal is to increase the level of automation of the 
kitchen and its associated tasks, by taking advantage of high-end appliances and new mobile user 
devices, like tablets and smartphones. One of the developments of the project encourages families 
to follow a healthier lifestyle. It includes a Meal Planner application for Android tablets that relies 
on a HI3 service, which uses a catalog of healthy recipes and information of the family members 
(personal and health information), to create a balanced and varied plan of meals for each day of 
the week. 

For a mobility use case scenario, we have imagined a case in which the family is receiving a 
visitor for some days. Therefore the Meal Planner should bear in mind the new member and adapt 
the meal plan to his/her requirements. More specifically, we have thought out a case where the 
grandfather or grandmother, who lives in a retirement home, is coming to his/her daughter´s home 
for the holidays. 

The retirement home has implemented an Ambient Intelligence system that aids the caregivers 
in their daily chores. Among other things, this system allows the medical staff to manage the diet 
of the residents and to monitor the residents using different devices. The system uses an instance 
of a Resident Agent (RA) service component for each resident. This service is in charge of 
managing the health information of the resident, providing it to other services (for example the 
catering service in order to prepare the meals), as well as interacting with the different monitoring 
devices associated to the resident. 

In order to keep the example as simple and relevant as possible, we have imagined a scenario 
where the resident is diabetic and uses an insulin pump with a glucose sensor. The RA, when 

     
Figure 9: Photographs of the kitchen and tablet used for testing the developments of the project 

 



16 
  

running in the resident home system, on one hand interacts with the glucose sensor in order to 
obtain information about glucose levels and report it to the medical staff. On the other hand, it 
interacts with a Meal Planner service used by the catering staff to plan the meals for the residents. 
The RA service is designed as a mobile HI3 component, so, when the grandmother/grandfather 
arrives at the family home, he/she can use a mobile device (currently a smartphone) to transfer 
his/her personal services from the resident home to the family home. Thus the RA can continue 
interacting with the glucose sensor, and can use local available services, like the Meal Planner, in 
order to adapt the system and environment to the user. 

Figure 10 shows a simplified view of the internal architecture of the components involved in 
this use case scenario. As can be seen, the two main elements of the example are the Meal Planner 
service and the Resident Agent service.  

The former is available in the family home AmI system and provides meal-planning 
capabilities to the tablet application. It is composed of three different agents: a coordinator agent 
that interacts with external entities and coordinates the other two, a recipe catalog agent that 
manages a database of recipes and a recipe selector agent, that uses information about the family 
members in order to plan an appropriate and balanced selection of meals. The user information is 
received in the form of food restrictions, for example, if some member of the family should avoid 
salted meals or has some kind of food allergy. As the information coming from different users can 
lead to conflicts, it uses a conflict resolution manager to select the most important restrictions 

 
Figure 10: Use case example service components 

 



17 
  

among the conflictive ones. This conflict manager relies on a fuzzy inference system, 
implemented with the jFuzzyLogic library, to solve the conflicts.  

Food restriction information can arrive to the MP from multiple sources and users. One 
example is the Family Diet (FD) service, which interacts with the Android application, allowing 
the family members to specify their restrictions. Another source of food restriction information 
would be the RA service when the grandfather/grandmother is in the family home. As indicated in 
section 3.5, these requests are parameterized by including a fuzzy variable indicating the 
importance of each request for a specific user. Therefore, depending on the health state of each 
user, his/her associated request would specify a different level of importance, which would be 
used by the previously cited conflict resolution manager of the MP to solve possible conflicts. 

The RA is composed of four different agents. A coordinator agent, a glucose monitoring agent 
that relies on a glucose report agent to create reports about the glucose levels of the resident, and a 
food restriction agent that uses a fuzzy inference system to automatically generate a set of food 
restrictions using health (diseases, allergies, etc.) and personal information of the resident. The 
RA is designed and implemented as a moveable HI3 component, thus it contains specific logic to 
control the operation of the component before and after a movement takes place. Not all HI3 
components are designed to support mobility, as the developers of the system decide which ones 
must require mobility, while the others would work remotely. 

When the grandfather/grandmother arrives at his/her family home, he/she uses the smartphone 
to start the transfer of personal services to the local available AmI system. The smartphone is 
automatically connected to the family WiFi network, which is previously known, and, as 
specified in Figure 5, it uses mDNS to find the available HI3 containers. When it finds a trusted 
one, it interacts with the resident’s home AmI system through the MUA Web Service to request 
the transfer of the user’s moveable services, in this case the RA, to the family home system. At 
this point, the resident home system notifies the different agents of the RA that they are going to 
be moved to a new location. The agents prepare themselves for the transfer by closing/freeing 
local resources. In the proposed example, the food restrictor agent will save its currently 
generated restrictions for use at the destination, and unload the fuzzy inference system, in order to 
alleviate the transfer payload. Once they have finished, the agents are paused and the transfer 
process begins.  

As shown in Figure 5, the transfer is carried out in two different phases. First, the agents’ 
states and directly used code is packaged compressed and transferred. After this, the agents are 
already available at the destination system, and their behavior execution is resumed. This 
behavior could be slightly limited, because not all the component code and files are available yet. 
Once the agents are restarted at the destination, the source platform starts the transfer of the 
complete component installation directory, which includes all the component code, library 
dependencies and data files. 

When the agents are restarted at the destination, the system executes a callback in each agent 
to notify them that they have been transferred to a new destination. Agents can execute the 
required logic to adapt to the new environment. In the example, the glucose monitor agent will 
look for a glucose sensor device and interact with it. The food restrictor agent would search for a 
service that offers meal planning functionally, and send a request to replan with the resident 
specified restrictions and parameter. Then it would wait until the complete component directory is 
transferred in order to again load the fuzzy inference system, which relies on files that would not 



18 
  

be transferred alongside the agent’s code and state. 
This kind of decisions, about what is transferred, and how the agent behavior is modified 

when running in a remote platform relies on the developers, and can be of paramount importance 
in order to obtain short response times when transferring components. Table 1 shows the transfer 
times we have measured for this example. Once the first stage is finished, the agents are already 
in execution at the destination. The decision to unload the fuzzy inference system, thus delaying 
the requirement of the jFuzzyLogic library, allows us to considerably reduce the component state 
in order to reduce the time that the component agents are paused. 

To finish this discussion about a possible use case scenario where ubiquity is achieved by 
mixing component mobility with remote access, we want to stress some of the benefits that could 
be obtained by transferring some user components, like the RA, to a platform physically close to 
the user: 

The RA requires interaction with local available hardware, in this case the glucose sensor. By 
transferring the monitoring software to a local platform it can interact directly with the devices, 
for example using a ZigBee or Bluetooth network, without requiring any other intermediary, and 
effectively reducing the delays in accessing the device, which can be of paramount importance for 
other devices/purposes, like user interaction hardware. 

Even when a remote system could rely on locally available services to access devices, it could 
be the case that the local system does not have installed a component with the required 
functionality. By having the ability to move software components from one platform to another, 
we maximize the possibility that users can access their utilities wherever they are. 

Even though this was not the case in this particular example, the RA could have used locally 
available information, like temperature, domotic devices state, etc. This information is private to 
the family, and sending it to a remote platform for processing could imply a privacy leak. 

Privacy leaks could also happen from the other side. For example, sensitive information about 
the user that is transferred within agent states to remote platforms. This case could be minimized 
or even completely solved by programming the agents not to transfer sensitive information. For 
example, the RA could decide not to transfer the user health information with the food restrictor 
agent, and transfer only the previously generated food restrictions, which contain far less sensitive 
information about the user. 

Even if in the current implementation an internet connection is required for component 
transference, once transferred, they can continue operating without a network connection to the 
original platform. This could be useful for mobile environments like vehicles. And as future 
work, it is planned to allow the possibility of transferring the component state and code to the 
smartphone that would store them until a valid destination platform is found to restart the 
execution of the component. 

Local network (Gigabit Ethernet) Internet (300 Kbit upload) 

First stage (~200 bytes) Second stage (~7.5 Mb) First stage (~200 bytes) Second stage (~7.5 Mb) 

2500-2700 ms 14000-15500 ms 4000-5000 ms ~300000 ms 

Table 1: Transference times measured for the Resident Agent component 



19 
  

5. Mobility Solutions Comparison 
This section relies on the information extracted from the related work presented in section 1 in 

order to provide a comparison of the different approaches for component mobility. Obviously, to 
compare the different solutions to each other and to HI3-mobility, a comparison framework must 
be established. Here it was based on a set of properties that were taken as important 
characteristics that every mobile software solution should bear in mind. The characteristics are 
presented below and they are followed by a comparison of the different technologies along with a 
discussion about these results. 

The main characteristics or features considered in the comparison were: 

• Code migration. The capability of the solution to physically migrate components. It avoids 
the need of having the components installed on every platform and allows the user’s own 
applications to be used wherever he is.  

• State migration. Related with the previous characteristic, it refers to the ability of the 
solution to move the state of the applications so that they can continue operating even 
without network connection.  

• Security and privacy. Mobile security and privacy measures implemented by the solution.  

• Environment Adaptation. This category aggregates all those characteristics related to the 
adaptation of mobile applications to the new environments while migrating.  

- Runtime environment. Capability of the solution for determining if the destination 
platform complies with the execution requirements of a component (platform software 
version, memory, CPU, etc.)  

- Service needs. The ability to connect the migrated services to the most adequate local 
ones. That is, find those local services that better fulfill the requirements of the 
migrated services and adapt their behavior to the limitations of the available local 
functionalities.  

- Contextual adaptation. This characteristic refers to an extension of the previous ones, 
where the platform, user and environment situation information is used in order to 
optimize the adaptation of the migrated components to a local platform. For example, 
information about shared resource usage, user preferences or needs, etc.  

- User interaction. This is a specialization of contextual adaptation, and represents the 
ability of the solution to adapt the user interface of the system to the interaction 
capabilities available in an environment.  

• Component distribution. Related to most of the characteristics of environment adaptation. 
It refers to the ability of the solution to select the destination of the migrated components 
using the previously described adaptation characteristics. This includes dividing the 
components of a service or application if necessary.  

• Task awareness. Applications and services are not used in an isolated manner, they are 
grouped in order to provide solutions to particular tasks the user is actively involved in, or 



20 
  

even tasks that are proactively performed by the system in the background.  

These nine characteristics cover many important requirements for software mobility, 
especially in the Ambient Intelligence or ubiquitous computing field. Therefore they can be a 
good first evaluation set to establish a reasonable framework to compare mobility solutions for 
Ambient Intelligence. Table 2 compares the technologies reviewed in section 1 in terms of these 
characteristics. 

The discussion of these results can be started considering agent mobility solutions. They are 
the simplest ones, focused exclusively on code and state migration, they do not provide support 
for component adaptation and other features. This leaves a lot of responsibilities on the hands of 
developers, who would have to deal with all the associated issues mentioned above. 

Two of the solutions, Aura [11] and TaskShadow [28] [10], share many similarities. Both use 
the idea of user task as a central concept, and they also take a similar technical approach. They do 
not migrate code and rely exclusively on available local applications and services that comply 
with the task requirements. The main difference between them is their application field. Aura was 
designed for a traditional software environment, while TaskShadow was designed for smart 
environments, so it provides support for context-based selection of the services, thus being a 
better option for AmI systems. 

Fluid computing solutions, like IBM’s fluid computing [7] or FlowSGI [8], are focused on the 
synchronization of the application model (from a MVC point of view), so they do not implement 
migration or adaptation strategies, and rely on local applications (selected by the user) to this end. 
Thanks to its application state synchronization capabilities, fluid computing is good for multi-user 
environments, but the lack of component adaptation features limits its usage in AmI 
environments. Its approach is very different from HI3-mobility, sharing only the ability to migrate 
the runtime state of the components. They are especially focused on multi-user applications with 
synchronized states and not really on application mobility. 

From a more general point of view, GAIA [12] [29] is a good example of mobility support. It 

 Agents Aura  Fluid C. GAIA HI3-mobility Preuveneers TaskShadow 

Code migration Yes No No Yes Yes Yes No 

State migration Yes No Yes Yes Yes Yes Yes 

Security and privacy Low Low Low Low Low Low Low 

Runtime environment Yes Yes No Yes Yes Yes No 

Service needs No Low No Medium Medium Medium Medium 

Contextual adaptation No No No No Medium Low Medium 

User interaction No Low Low Low Low Low Low 

Component distribution No Low Low Medium Medium Low Medium 

Task awareness No Medium No No Low No High 

Table 2: Comparison of component mobility solutions 



21 
  

fully supports code and state migration, it provides capabilities to describe application 
requirements and search other services that match them, and it supports component distribution. 
Nevertheless, it does not support the use of contextual information to drive the adaptation to new 
environments, nor does it support task awareness. 

Finally, the service-oriented approach of [9] supports service replication and state 
synchronization between replicas. It also uses contextual information in order to allow for a more 
user and environment adapted migration of the services. Therefore, even though it does not 
support task awareness, and uses only environment sensing information as context, it is one of the 
most complete approaches for mobility in ubiquitous computing or AmI environments. 

The HI3 approach shares many similarities with GAIA and the Preuveneers approaches, but it 
elevates contextual information to a more prominent position, providing capabilities to solve 
shared resources and preference conflicts between users. HI3 also provides a complete ontological 
framework for service discovery and request parameterization, and includes basic support for task 
awareness, by grouping and managing several user services at the same time. 

With respect to Aura and TaskShadow, even though the latter makes use of contextual 
information to drive the migration, the approach to mobility chosen by HI3 is more flexible. Aura 
and TaskShadow do not support code migration, which is a core feature in HI3-mobility. This 
feature allows users to continuously use their own applications and services, while relying on 
local services and devices to access local resources or improve performance. TaskShadows relies 
exclusively on locally available resources, thus if there is no resource that provides one of the 
required functionalities, the tasks cannot be moved. 

It is worth noting that, currently, even though the HI3-mobility approach has devoted some 
efforts to increasing user privacy, most solutions have done very little in terms of the security and 
privacy aspects of mobility. It is also important to point out that user interaction adaptation is 
future work for all of them. 

Summarizing, most efforts in the line of incorporating mobility to AmI systems are still in 
their infancy. After being focused on the physical migration of components and state 
synchronization, many solutions have started to explore the adaptation to new environments by 
including contextual information in their service discovery strategies. However, there are still a 
lot of issues that have been barely addressed such as privacy and security, resource and user 
preference conflicts or user interface adaptation. 

6. Conclusions 
Ubiquity is key characteristic of Ambient Intelligence systems. It increases the level of 

transparency by allowing access to system functionality independently of the user location, 
effectively releasing users from the management of their applications and data. Component 
mobility is a prominent approach to achieve ubiquity, as it provides important benefits in areas 
such as system operation latency, system autonomy or user data privacy. However, these benefits 
are usually overlooked by the majority of AmI projects, which rely exclusively on distributed 
operation to achieve ubiquity.  

Software mobility is a complex topic but, when applied to AmI and ubiquitous computing 
environments, its complexity increases even more, as a whole lot of new issues related with 
interoperability, system autonomy, device access or security and privacy are introduced. This 



22 
  

paper describes the support for component mobility that has been integrated in a general-purpose 
ambient intelligence development platform called HI3 architecture. Unlike other approaches, the 
solution presented here pays particular attention to the preservation of user privacy and 
preferences, and uses this information to drive the component migration process. 

A user-guided approach, on the one hand, enables the mobility system to take advantage of 
information on user preferences to optimize the matchmaking between the user software 
requirements and the capabilities advertised by a platform. On the other hand, by limiting the 
exposure of user private data to unknown third parties, it allows the minimization of privacy 
problems associated to user software mobility.  

Concerning the physical migration of components, the HI3-mobility approach adapts existing 
approximations to the particularities of an AmI multi-agent based platform, paying special 
attention to code access privileges within the platform, as well as latency and fault-tolerance 
issues during the mobility process. 

Regarding component self-adaptation, which is also an important and studied topic, the 
solution proposed allows components to select the most appropriate services in the target platform 
according to the changing execution conditions, and helps components in solving conflicts from 
its interaction with multiple users. A lot of work is still required in order to obtain a complete 
mobility solution for AmI. From extending the current developments, for example with 
autonomous and intelligent selection of target platforms based on non-functional requirements 
(i.e., QoS and security), to new developments in areas like protection of the mobile components 
from their hosts and vice-versa, user interface adaptation after a migration process or data privacy 
and synchronization. 

References 
[1] A. Paz-Lopez, G. Varela, J. Monroy, S. Vazquez-Rodriguez, R. J. Duro, HI3 Project: General Purpose Ambient 

Intelligence Architecture, Proceedings of the 3rd Workshop on Artificial Intelligence Techniques for ambient 
Intelligence, AITAmI08 (2008) 77–81. 

[2] D. Lange, M. Oshima, Seven good reasons for mobile agents, Communications of the ACM 42 (3) (1999) 88–
89. 

[3] Jade. Java agent development framework.  
URL http://jade.tilab.com 

[4] Aglets. Java mobile agent platform and library.  
URL: http://aglets.sourceforge.net 

[5] J. Cucurull, R. Martì, G. Navarro-Arribas, S. Robles, J. Borrell, Full mobile agent interoperability in an IEEE-
FIPA context, Journal of Systems and Software 82 (12) (2009) 1927–1940. 

[6] FIPA. Foundation for intelligent physical agents.  
URL http://www.fipa.org 

[7] D. Bourges-Waldegg, Y. Duponchel, M. Graf, M. Moser, The Fluid Computing Middleware: Bringing 
Application Fluidity to the Mobile Internet, The 2005 Symposium on Applications and the Internet (2005) 54–
63. 

[8] J. Rellermeyer, flowSGI: a framework for dynamic fluid applications, Ph.D. thesis (2006). 
[9] D. Preuveneers, Y. Berbers, Pervasive services on the move: Smart service diffusion on the OSGi framework, 

Lecture Notes in Computer Science 5061 (2008) 46–60. 
[10] G. Pan, Y. Xu, Z. Wu, S. Li, L. Yang, M. Lin, Z. Liu, TaskShadow: Toward Seamless Task Migration across 

Smart Environments, IEEE Intelligent Systems 26 (3) (2011) 50. 



23 
  

[11] J. P. Sousa, G. D, D. Garlan, Aura: an architectural framework for user mobility in ubiquitous computing 
environments, Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architecture 25 (August) 
(2002) 29–43. 

[12] M. Roman, H. Ho, R. Campbell, Application mobility in active spaces, in: 1st International Conference on 
Mobile and Ubiquitous Multimedia, Oulu, Finland, 2002. 

[13] X. Song, U. Ramachandran, Mobigo: A middleware for seamless mobility, in: Embedded and Real-Time 
Computing Systems and Applications, 2007. RTCSA 2007. 13th IEEE International Conference on, IEEE, 
2007, pp. 249–256. 

[14] J. Cucurull, R. Martì, G. Navarro-Arribas, S. Robles, J. Borrell, G. Suades, Fragment Transfer Protocol: An 
IEEE-FIPA based efficient transfer protocol for mobile agents, Computer Communications 33 (18) (2010) 
2203–2214.  

[15] U. Aguilera, A. Almeida, P, D, Continuous service execution in mobile prosumer environments, in: IV 
International Symposium of Ubiquitous Computing and Ambient Intelligence, UCAmI 2010, 2010, pp. 229–
238. 

[16] L. Balme, A. Demeure, N. Barralon, J. Coutaz, G. Calvary, Cameleon-rt: A software architecture reference 
model for distributed, migratable, and plastic user interfaces, in: Ambient, Vol. eds, 2004, pp. pp291–302. 

[17] D. Thevenin, J. Coutaz, Plasticity of user interfaces: Framework and research agenda, Proceedings of 
INTERACT’99. 

[18] G. Varela, A. Paz-Lopez, J. Becerra, S. Vazquez-Rodriguez, R. Duro, UniDA: Uniform Device Access 
Framework for Human Interaction Environments, Sensors 11 (10) (2011) 9361–9392.  

[19] A. Paz-Lopez, G. Varela, J. Monroy, S. Vazquez-Rodriguez, R. J. Duro, HI3 Project: Software Architecture 
System for Elderly Care in a Retirement Home, in: 3rd Symposioum of Ubiquitous Computing and Ambient 
Intelligence, 2008, pp. 11–20. 

[20] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented Computing: a Research Roadmap, 
International Journal of Cooperative Information Systems 17 (02) (2008) 223. 

[21] J. M. Rodriguez, M. Crasso, A. Zunino, M. Campo, Improving Web Service descriptions for effective service 
discovery, Science of Computer Programming 75 (11) (2010) 1001–1021. 

[22] OWL-S: Semantic markup for web services.  
URL http://www.w3.org/Submission/OWL-S/ 

[23] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, 
D. Fensel, Web service modeling ontology, Applied Ontology 1 (1) (2005) 77–106. 

[24] S. Ben Mokhtar, N. Georgantas, V. Issarny, COCOA: COnversation-based service COmposition in pervAsive 
computing environments with QoS support, Journal of Systems and Software 80 (12) (2007) 1941–1955. 

[25] N. Georgantas, V. Issarny, S. Mokhtar, Y. Bromberg, S. Bianco, G. Thomson, P. Raverdy, A. Urbieta, 
R. Cardoso, Middleware Architecture for Ambient Intelligence in the Networked Home, Handbook of Ambient 
Intelligence and Smart Environments (2010) 1139–1169. 

[26] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K. Sycara, D. L. McGuinness, E. Sirin, 
N. Srinivasan, Bringing Semantics to Web Services with OWL-S, World Wide Web Internet And Web 
Information Systems 10 (3) (2007) 243–277. 

[27] A. Gal, P. Shvaiko, Advances in Ontology Matching, in: T. Dillon, E. Chang, R. Meersman, K. Sycara (Eds.), 
Advances in Web Semantics I, Vol. 4891 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 
2009, Ch. 6, pp. 176–198. 

[28] G. Pan, Y. Xu, Z. Wu, L. Yang, M. Lin, S. Li, Task Follow-me: Towards Seamless Task Migration Across 
Smart Environments, IEEE Intelligent Systems. 

[29] C. Hess, R. Cerqueira, A. Ranganathan, Gaia: A Middleware Infrastructure to Enable Active Spaces, IEEE 
Pervasive Computing 20. 


